Publications by authors named "Shigehiro Kamitori"

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes.

View Article and Find Full Text PDF

Clostridioides difficile is the major causative pathogen of pseudomembranous colitis, and novel antimicrobial agents are required for treatment. Phage-derived endolysins exhibiting species-specific lytic activity have potential as novel antimicrobial agents. We surveyed the genome of C.

View Article and Find Full Text PDF

d-Allose is an aldohexose of the C3-epimer of d-glucose, existing in very small amounts in nature, called a rare sugar. The operon responsible for d-allose metabolism, the allose operon, was found in several bacteria, which consists of seven genes: alsR, alsB, alsA, alsC, alsE, alsK, and rpiB. To understand the biological implication of the allose operon utilizing a rare sugar of d-allose as a carbon source, it is important to clarify whether the allose operon functions specifically for d-allose or also functions for other ligands.

View Article and Find Full Text PDF
Article Synopsis
  • Sortase-mediated pili are flexible protein structures in bacteria that help them attach to host tissues, consisting of major and minor/tip pilins.* -
  • Clostridium perfringens, a Gram-positive bacterium, has a specific minor/tip pilin called CppB that can bind to collagen due to its unique structural features.* -
  • X-ray analysis shows that CppB's collagen-binding domains have an L-shaped structure, with a special β-sheet that enhances its binding to collagen peptides.*
View Article and Find Full Text PDF

Transketolase is a key enzyme in the pentose phosphate pathway in all organisms, recognizing sugar phosphates as substrates. Transketolase with a cofactor of thiamine pyrophosphate catalyzes the transfer of a 2-carbon unit from D-xylulose-5-phosphate to D-ribose-5-phosphate (5-carbon aldose), giving D-sedoheptulose-7-phosphate (7-carbon ketose). Transketolases can also recognize non-phosphorylated monosaccharides as substrates, and catalyze the formation of non-phosphorylated 7-carbon ketose (heptulose), which has attracted pharmaceutical attention as an inhibitor of sugar metabolism.

View Article and Find Full Text PDF

is the major pathogen of pseudomembranous colitis, and novel antimicrobial agents are sought after for its treatment. Phage-derived endolysins with species-specific lytic activity have potential as novel antimicrobial agents. We surveyed the genome of strain 630 and identified an endolysin gene, Ecd09610, which has an uncharacterized domain at the N-terminus and two catalytic domains that are homologous to glucosaminidase and endopeptidase at the C-terminus.

View Article and Find Full Text PDF

Modification of the domain architecture of galectins has been attempted to analyze their biological functions and to develop medical applications. Several types of galectin-1 repeat mutants were previously reported but, however, it was not clear whether the native structure of the wild type was retained. In this study, we determined the crystal structure of a galectin-1 tandem-repeat mutant with a short linker peptide, and compared the unfolding profiles of the wild type and mutant by chemical denaturation.

View Article and Find Full Text PDF
Article Synopsis
  • * The X-ray structure of Psa's catalytic domain was determined to have a typical Amidase_2 form, featuring a spherical shape with a central β-sheet and two surrounding α-helices, as well as a unique substrate-binding groove.
  • * The study included modeling the enzyme/substrate complex and mutational analysis, leading to a proposed catalytic mechanism that involves zinc and tyrosine in the reaction process.
View Article and Find Full Text PDF

The galectin family is a representative soluble lectin group, which is responsible for the modulation of various cell functions. Although the carbohydrate-binding specificity of galectins has been well-studied, the relationship between protein structure and specificity remains to be elucidated. We previously reported the characteristics of a Xenopus laevis skin galectin, xgalectin-Va, which had diverged from galectin-1.

View Article and Find Full Text PDF

d-Allulose has potential as a low-calorie sweetener which can suppress fat accumulation. Several enzymes capable of d-allulose production have been isolated, including d-tagatose 3-epimerases. Here, we report the isolation of a novel protein from Methylomonas sp.

View Article and Find Full Text PDF

Pili of Gram-positive bacteria are flexible rod proteins covalently attached to the bacterial cell wall, that play important roles in the initial adhesion of bacterial cells to host tissues and bacterial colonization. Pili are formed by the polymerization of major and minor pilins, catalyzed by class C sortase (SrtC), a family of cysteine transpeptidases. The Gram-positive bacterium Clostridium perfringens has a major pilin (CppA), a minor pilin (CppB), and SrtC (CpSrtC).

View Article and Find Full Text PDF

Autolysin is a lytic enzyme that hydrolyzes peptidoglycans of the bacterial cell wall, with a catalytic domain and cell wall-binding (CWB) domains, to be involved in different physiological functions that require bacterial cell wall remodeling. We identified a novel autolysin, Acd24020, from Clostridioides (Clostridium) difficile (C. difficile), with an endopeptidase catalytic domain belonging to the NlpC/P60 family and three bacterial Src-homology 3 domains as CWB domains.

View Article and Find Full Text PDF

The galectins are a family of β-galactoside-specific animal lectins, and have attracted much attention as novel regulators of the immune system. Galectin-10 is well-expressed in eosinophils, and spontaneously forms Charcot-Leyden crystals (CLCs), during prolonged eosinophilic inflammatory reactions, which are frequently observed in eosinophilic diseases. Although biochemical and structural characterizations of galectin-10 have been done, its biological role and molecular mechanism are still unclear, and few X-ray structures of galectin-10 in complex with monosaccharides/oligosaccharides have been reported.

View Article and Find Full Text PDF

The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe-4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit.

View Article and Find Full Text PDF

Pili in Gram-positive bacteria are flexible rod proteins associated with the bacterial cell surface, and they play important roles in the initial adhesion to host tissues and colonization. The pilus shaft is formed by the covalent polymerization of major pilins, catalyzed by sortases, a family of cysteine transpeptidases. Here, X-ray structures of the major pilins from Clostridium perfringens strains 13 and SM101 and of sortase from strain SM101 are presented with biochemical analysis to detect the formation of pili in vivo.

View Article and Find Full Text PDF

The X-ray structure of ketose 3-epimerase from Arthrobacter globiformis M30, which was previously reported to be a D-allulose 3-epimerase (AgD-AE), was determined at 1.96 Å resolution. The crystal belonged to the hexagonal space group P622, with unit-cell parameters a = b = 103.

View Article and Find Full Text PDF

A recombinant Staphylococcus equorum manganese superoxide dismutase (MnSOD) with an Asp13Arg substitution displays activity over a wide range of pH, at high temperature and in the presence of chaotropic agents, and retains 50% of its activity after irradiation with UVC for up to 45 min. Interestingly, Bacillus subtilis MnSOD does not have the same stability, despite having a closely similar primary structure and thus presumably also tertiary structure. Here, the crystal structure of S.

View Article and Find Full Text PDF

The pathogenesis and infectivity of Gram-positive bacteria are mediated by many surface proteins that are covalently attached to peptidoglycans of the cell wall. The covalent attachment of these proteins is catalyzed by sortases (Srts), a family of cysteine transpeptidases, which are classified into six classes, A - F, based on their amino acid sequences and biological roles. Clostridium perfringens, one of the pathogenic clostridial species, has a class B sortase (CpSrtB) with 249 amino acid residues.

View Article and Find Full Text PDF

Galectin-9 (G9) is a tandem-repeat type β-galactoside-specific animal lectin having N-terminal and C-terminal carbohydrate recognition domains (N-CRD and C-CRD, respectively) joined by a linker peptide that is involved in the immune system. G9 is divalent in glycan binding, and structural information about the spatial arrangement of the two CRDs is very important for elucidating its biological functions. As G9 is protease sensitive due to the long linker, the protease-resistant mutant form of G9 (G9Null) was developed by modification of the linker peptide, while retaining its biological functions.

View Article and Find Full Text PDF

Current enzymatic systems for quantifying glycated hemoglobin are based on the FAD-containing enzyme fructosyl peptide oxidase (FPOX). FPOX has substrate specificity for fructosyl- N-valyl-histidine derived from proteolytic digestion of the N-terminus of the HbA1c β-chain. This study reports the X-ray structures of the wild-type and Asn56Ala (N56A) mutant of Phaeosphaeria nodorum fructosyl peptide oxidase (PnFPOX) to elucidate the residues responsible for the oxidative half-reaction.

View Article and Find Full Text PDF

Bacterial autolysins can partially hydrolyze cell wall peptidoglycans into small sections to regulate cell separation/division and the growth phase. Clostridium perfringens autolysin (Acp) has an N-terminal cell wall-binding domain and a C-terminal catalytic domain with glucosaminidase activity that belongs to the glycoside hydrolase 73 family. Here, we determined the X-ray structure of the Acp catalytic domain (AcpCD) at 1.

View Article and Find Full Text PDF

The flavoenzyme 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO) catalyzes the cleavage of the pyridine ring of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) in the presence of NADH, molecular oxygen, and water. MHPCO also catalyzes the NADH oxidation reaction uncoupled with ring opening in the absence of MHPC (the basal activity). The enzyme shows activity toward not only MHPC but also 5-hydroxynicotinic acid (5HN) and 5-pyridoxic acid (5PA).

View Article and Find Full Text PDF

Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE.

View Article and Find Full Text PDF

We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.

View Article and Find Full Text PDF

Xenopus laevis (African clawed frog) has two types of proto-type galectins that are similar to mammalian galectin-1 in amino acid sequence. One type, comprising xgalectin-Ia and -Ib, is regarded as being equivalent to galectin-1, and the other type, comprising xgalectin-Va and -Vb, is expected to be a unique galectin subgroup. The latter is considerably abundant in frog skin; however, its biological function remains unclear.

View Article and Find Full Text PDF