Channelrhodopsins are light-gated ion channels with a retinal chromophore found in microbes and are widely used in optogenetics, a field of neuroscience that utilizes light to regulate neuronal activity. ACR1, an anion conducting channelrhodopsin derived from , has attracted attention for its application as a neuronal silencer in optogenetics because of its high conductivity and selectivity. However, atomistic mechanisms of channel photoactivation and ion conduction have not yet been elucidated.
View Article and Find Full Text PDFPhotoisomerization of an all--retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S-state chromophore in halorhodopsin (HR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy.
View Article and Find Full Text PDFFunctional molecular liquids (FMLs) based on alkylated π-conjugated molecules have attracted attention as solvent-free and nonvolatile liquid materials with prominent optoelectronic features. Recently, novel FML compounds containing pyrene as the functional core were synthesized, and their rheological and photochemical properties were investigated. Although the molecules differ only in the number of alkyl chain substituents and their substitution positions, their viscosity coefficients are largely different beyond the Stokes-Einstein relation on the assumption of identical microscopic friction, indicating that local microscopic molecular interactions are crucial for the macroscopic rheological properties.
View Article and Find Full Text PDFOuter hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (Pres), complexed with chloride, sulfate, or salicylate at 3.52-3.
View Article and Find Full Text PDFA human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged.
View Article and Find Full Text PDFVarious biochemical activities of metabolism and biosynthesis are fulfilled by redox processes with explicit electron exchange, which furnish redox enzymes with high chemical reactivity. However, theoretical investigation of a redox process, which simultaneously involves a complex electronic change at a redox metal center and conformational reorganization of the surrounding protein environment coupled to the electronic change, requires computationally conflicting approaches, highly accurate quantum chemical calculations, and long-time molecular dynamics (MD) simulations, limiting the physicochemical understanding of biological redox processes. Here, we theoretically examined a redox process of cytochrome c by means of a hybrid molecular simulation technique, which enables one to consistently treat the redox center at the ab initio quantum chemistry level of theory and the protein reorganization with long-time MD simulations on the microsecond timescale.
View Article and Find Full Text PDFA computational method to investigate the global conformational change of a protein is proposed by combining the linear response path following (LRPF) method and three-dimensional reference interaction site model (3D-RISM) theory, which is referred to as the LRPF/3D-RISM method. The proposed method makes it possible to efficiently simulate protein conformational changes caused by either solutions of varying concentrations or the presence of cosolvent species by taking advantage of the LRPF and 3D-RISM. The proposed method is applied to the urea-induced denaturation of ubiquitin.
View Article and Find Full Text PDFChannelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution.
View Article and Find Full Text PDFSelective recognition of saccharides by artificial receptors in water is a challenging goal due to their strong hydrophilicities and complex molecular structures with subtle regio- and stereochemical differences. We report the selective and efficient encapsulation of d-sucrose within a coordination-driven molecular capsule from natural saccharide mixtures in water (~100% selectivity, >85% yield, and ~10 M binding constant). Unlike previous artificial receptors and natural receptors that rely on multiple hydrogen-bonding interactions, theoretical calculations and control experiments indicate that the observed unique selectivity arises from multiple CH-π interactions between the sucrose hydrocarbon backbone and the shape-complementary polyaromatic cavity (~1 nm in diameter) of the capsule.
View Article and Find Full Text PDFThe mitochondrial ADP/ATP carrier (AAC) is a membrane transporter that exchanges a cytosolic ADP for a matrix ATP. Atomic structures in an outward-facing (OF) form which binds an ADP from the intermembrane space have been solved by X-ray crystallography, and revealed their unique pseudo three-fold symmetry fold which is qualitatively different from pseudo two-fold symmetry of most transporters of which atomic structures have been solved. However, any atomic-level information on an inward-facing (IF) form, which binds an ATP from the matrix side and is fixed by binding of an inhibitor, bongkrekic acid (BA), is not available, and thus its alternating access mechanism for the transport process is unknown.
View Article and Find Full Text PDFMany remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field.
View Article and Find Full Text PDFRhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein.
View Article and Find Full Text PDFThermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified.
View Article and Find Full Text PDFPhotoactive yellow protein is a soluble photoreceptor protein involved in signal transduction for phototaxis. A hydrogen-bond between the chromophore, p-coumaric acid (pCA), and a nearby carboxyl group of Glu46 at the active site is known to play a crucial role in the formation of the signaling state in the photoactivation. Since the hydrogen-bond at the active site as well as the extensive conformational changes of the protein in the formation of the signaling state are considered to be controlled by water molecules, we theoretically examined influence of bulk water environment on the functionally important hydrogen-bond by means of molecular simulations.
View Article and Find Full Text PDFMolecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding.
View Article and Find Full Text PDFColor variants of human cellular retinol binding protein II (hCRBPII) created by protein engineering were recently shown to exhibit anomalously wide photoabsorption spectral shifts over ∼200 nm across the visible region. The remarkable phenomenon provides a unique opportunity to gain insight into the molecular basis of the color tuning of retinal binding proteins for understanding of color vision as well as for engineering of novel color variants of retinal binding photoreceptor proteins employed in optogenetics. Here, we report a theoretical investigation of the molecular mechanism underlying the anomalously wide spectral shifts of the color variants of hCRBPII.
View Article and Find Full Text PDFChannelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited.
View Article and Find Full Text PDFMicrobial opsins with a bound chromophore function as photosensitive ion transporters and have been employed in optogenetics for the optical control of neuronal activity. Molecular engineering has been utilized to create colour variants for the functional augmentation of optogenetics tools, but was limited by the complexity of the protein-chromophore interactions. Here we report the development of blue-shifted colour variants by rational design at atomic resolution, achieved through accurate hybrid molecular simulations, electrophysiology and X-ray crystallography.
View Article and Find Full Text PDFThere are two types of membrane-embedded ion transport machineries in nature. The ion pumps generate electrochemical potential by energy-coupled active ion transportation, while the ion channels produce action potential by stimulus-dependent passive ion transportation. About 80% of the amino acid residues of the light-driven proton pump archaerhodopsin-3 (AR3) and the light-gated cation channel channelrhodopsin (ChR) differ although they share the close similarity in architecture.
View Article and Find Full Text PDFA catalytically important arginine, called Arg finger, is employed in many enzymes to regulate their functions through enzymatic hydrolysis of nucleotide triphosphates. F1-ATPase (F1), a rotary motor protein, possesses Arg fingers which catalyze hydrolysis of adenosine triphosphate (ATP) for efficient chemomechanical energy conversion. In this study, we examined the Arg finger catalysis by single-molecule measurements for a mutant of F1 in which the Arg finger is substituted with an unnatural amino acid of a lysine analogue, 2,7-diaminoheptanoic acid (Lyk).
View Article and Find Full Text PDFThe excited-state properties of bacteriochlorophyll (BChl) a in triethylamine, 1-propanol, and methanol are investigated with the time-dependent density functional theory by using the quantum mechanical and molecular mechanical reweighting free energy self-consistant field method. It is found that no prevalent density functionals can reproduce the experimental excited-state properties, i.e.
View Article and Find Full Text PDFA novel M2L2 molecular tube capable of binding fullerene C60 was synthesized from bispyridine ligands with embedded anthracene panels and Ag(I) hinges. Unlike previous molecular cages and capsules, this open-ended tubular host can accommodate a single molecule of various C60 derivatives with large substituents. The fullerene guest can then be released by using the ideal, noninvasive external stimulus, light.
View Article and Find Full Text PDF