The migration of Zn ions is significantly more challenging compared to that of Li ions within the same crystalline framework, leading to poor rate performance of zinc-ion batteries (ZIBs). Compared to Li, the slower migration rate of Zn is vaguely attributed to the stronger electrostatic interaction induced by Zn. Herein, the rule of how the size of the migration channel and electrostatic interaction affect Zn and Li migration in α-VO has been systematically investigated by first-principle calculations.
View Article and Find Full Text PDFThe local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.
View Article and Find Full Text PDFRecharging primary batteries is of great importance for increasing the energy density of energy storage systems to power electric aircraft and beyond. Carbon fluoride (CF) cathodes are characterized by high specific capacity and energy density (865 mAh g and 2180 Wh kg, respectively). Preventing the crystallization of LiF with an intermediate and lowering the energy barrier from LiF to CF is expected to render the Li/CF battery reversible.
View Article and Find Full Text PDFThe aqueous zinc ion battery emerges as the promising candidate applied in large-scale energy storage system. However, Zn anode suffers from the issues including Zn dendrite, Hydrogen evolution reaction and corrosion. These challenges are primarily derived from the instability of anode/electrolyte interface, which is associated with the interfacial charge density distribution.
View Article and Find Full Text PDFBiOCl is a promising photocatalyst, but due to its weak visible light absorption capacity and low photogenerated electron-hole pair separation rate, its practical application is limited to a certain extent. In this study, a novel double Z-scheme heterojunction UiO-66-NH/BiOCl/BiS catalyst was constructed to broaden the visible light response range and promote high photogenerated hole-electron separation of BiOCl. Its photocatalytic performance is evaluated by dissociating tetracycline (TC) and rhodamine B (RhB) in visible light.
View Article and Find Full Text PDFNaV(PO) is a promising high-voltage cathode for aqueous zinc-ion batteries (ZIBs) and organic sodium-ion batteries (SIBs). However, the poor rate capability, specific capacity, and cycling stability severely hamper it from further development. In this work, NaV(PO) (NVP) with vanadium nitride (VN) quantum dots encapsulated by nitrogen-doped carbon (NC) nanoflowers (NVP/VN@NC) are manufactured as cathode using in situ nitridation, carbon coating, and structural adjustment.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2024
In this study, a flexible, free-standing Fe-doped CoP nanoarrays electrode for superior lithium-ion storage has been successfully fabricated. The electrode combines the advantages of a Fe-doping and a flexible carbon cloth (CC) support, resulting in a high specific capacity (1356 mAh/g at 0.2 A/g) and excellent cycling stability (1138 mAh/g after 100 cycles).
View Article and Find Full Text PDFHydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step.
View Article and Find Full Text PDFA recyclable hard-template method is proposed to exploit spindle-shaped hollow nitrogen-doped amorphous carbon (h-NAC) with a large number of short-range curved carbon fragments as anodes for lithium/sodium ion batteries (LIBs/SIBs). Besides providing adsorption sites due to the high existence of oxygen-containing functional groups (CO and COOH), the heavily exposed edge regions also provide a favorable storage environment with high adsorption energy for Li/Na due to their short-range curved structure. Importantly, the etching solution of hard templates can be recycled to generate the FeOOH nanospindles as a precursor through a simple chemical titration, which supplies a new idea for the green preparation of hollow materials.
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) have attracted considerable attention. However, due to the uneven distribution of charge density at Zn anode-electrolyte interface, severe dendrites and corrosion are generated during cycling. In this work, a facile and scalable strategy to address the above-mentioned issues has been proposed through regulating the charge density at Zn anode-electrolyte interface.
View Article and Find Full Text PDFInorganic/organic composite solid electrolytes (CSEs) have attracted ever-increasing attentions due to their outstanding mechanical stability and processibility. However, the inferior inorganic/organic interface compatibility limits their ionic conductivity and electrochemical stability, which hinders their application in solid-state batteries. Herein, we report a homogeneously distributed inorganic fillers in polymer by in-situ anchoring SiO particles in polyethylene oxide (PEO) matrix (I-PEO-SiO).
View Article and Find Full Text PDFLiNiMnCoO||SiOx@graphite (NCM811||SiOx@G)-based lithium-ion batteries (LIBs) exhibit high energy density and have found wide applications in various fields, including electric vehicles. Nonetheless, its low-temperature performance remains a challenge. One of the most efficacious strategies to enhance the low-temperature functionality of battery is the development of appropriate electrolytes with low-temperature suitability.
View Article and Find Full Text PDFDue to the theoretical ultrahigh energy density of the Li-O battery chemistry, it has been hailed as the ultimate battery technology. Yet, practical Li-O batteries usually need to be designed in a large-sized pattern to actualize a high specific energy density, and such batteries often cannot be cycled effectively. To understand the inherent reasons, we specially prepared large-sized (13 cm × 13 cm) Li-O model batteries with practical energy output (6.
View Article and Find Full Text PDFThe development of all-solid-state Li metal batteries (ASSLMBs) has attracted significant attention due to their potential to maximize energy density and improved safety compared to the conventional liquid-electrolyte-based Li-ion batteries. However, it is very challenging to fabricate an ideal solid-state electrolyte (SSE) that simultaneously possesses high ionic conductivity, excellent air-stability, and good Li metal compatibility. Herein, a new glass-ceramic Li P Sn S (gc-Li P Sn S ) SSE is synthesized to satisfy the aforementioned requirements, enabling high-performance ASSLMBs at room temperature (RT).
View Article and Find Full Text PDFSolid-state Li-O batteries possess the ability to deliver high energy density with enhanced safety. However, designing a highly functional solid-state air electrode is the main bottleneck for its further development. Herein, we adopt a hybrid electronic and ionic conductor to build solid-state air electrode that makes the transition of Li-O battery electrochemical mechanism from a three-phase process to a two-phase process.
View Article and Find Full Text PDFNickel-rich layered oxides, as the most promising commercial cathode material for high-energy density lithium-ion batteries, experience significant surface structural instabilities that lead to severe capacity deterioration and poor thermal stability. To address these issues, radially aligned grains and surface LiNiWO-like heterostructures are designed and obtained with a simple tungsten modification strategy in the LiNiCoMnO cathode. The formation of radially aligned grains, manipulated by the WO modifier during synthesis, provides a fast Li diffusion channel during the charge/discharge process.
View Article and Find Full Text PDFPre-extracting Li from Li-rich layered oxides by chemical method is considered to be a targeted strategy for improving this class of cathode material. Understanding the structural evolution of the delithiated material is very important because this is directly related to the preparation of electrochemical performance enhanced Li-rich material. Herein, we perform a high temperature reheat treatment on the quantitatively delithiated Li-rich materials with different amounts of surface defect-spinel phase and carefully investigate the structural evolution of these delithiated materials.
View Article and Find Full Text PDFThe development of new materials and the understanding of the microstructure formation of electrodes have become increasingly important for improving Li-ion battery performance. In this study, we investigate the effect of solid content on the rheological properties of and the microstructures in the cathode slurry prepared from Ni-rich materials. With long-chain structures, PVDF molecules can change their configurations when they come into contact with the solid particles in slurries, and their bridging function can change with the solid content in the slurry.
View Article and Find Full Text PDFThe high ionic conductivity, air/humidity tolerance, and related chemistry of LiMX solid-state electrolytes (SSEs, M is a metal element, and X is a halogen) has recently gained significant interest. However, most of the halide SSEs suffer from irreversible chemical degradation when exposed to a humid atmosphere, which originates from hydrolysis. Herein, the function of the M atom in LiMX was clarified by a series of LiYInCl (0 ≤ < 1).
View Article and Find Full Text PDFThe enabling of high energy density of all-solid-state lithium batteries (ASSLBs) requires the development of highly Li-conductive solid-state electrolytes (SSEs) with good chemical and electrochemical stability. Recently, halide SSEs based on different material design principles have opened new opportunities for ASSLBs. Here, we discovered a series of LiScCl SSEs ( = 2.
View Article and Find Full Text PDFMetal-N-decorated carbon catalysts are cheap and effective alternatives for replacing the high-priced Pt-based ones in activating the reduction of oxygen for metal-air or fuel cells. The preparation of such heterogeneous catalysts often requires complex synthesis processes, including harsh acid treatment, secondary pyrolysis processes, etching, , to make the heteroatoms evenly dispersed in the carbon substrates to obtain enhanced activities. Through combined experimental characterizations, we found that by precise control of the precursors added, a Fe/N uniformly distributed, agglomeration-free Fe/N decorated Super-P carbon material (FNDSP) can be easily obtained by a one-pot synthesis process with distinctly higher pyridinic-N content and elevated catalytic activity.
View Article and Find Full Text PDFAll-solid-state batteries are expected to be promising next-generation energy storage systems with increased energy density compared to the state-of-the-art Li-ion batteries. Nonetheless, the electrochemical performances of the all-solid-state batteries are currently limited by the high interfacial resistance between active electrode materials and solid-state electrolytes. In particular, elemental interdiffusion and the formation of interlayers with low ionic conductivity are known to restrict the battery performance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2019
To promote the development of solid-state batteries, polymer-, oxide-, and sulfide-based solid-state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high-temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10 S cm ), good air stability, wide electrochemical window, excellent electrode interface stability, low-cost mass production is required.
View Article and Find Full Text PDFLiAlTi(PO) (LATP) is a popular solid electrolyte used in solid-state lithium batteries due to its high ionic conductivity. Traditionally, the densification of LATP is achieved by a high-temperature sintering process (about 1000 °C). Herein, we report the compaction of LATP by a newly developed cold sintering process and post-annealing.
View Article and Find Full Text PDFAll-solid-state Li-S batteries are promising candidates for next-generation energy-storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeS solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all-solid-state lithium batteries (ASSLBs).
View Article and Find Full Text PDF