Publications by authors named "Shifman M"

RGM interactions with its receptor Neogenin play an important role in the regulation of axonal guidance or cell death in the developing central nervous system. The sea lamprey transcript has been recently identified. However, its expression has been only studied in the spinal cord of mature (premetamorphic) larval sea lampreys.

View Article and Find Full Text PDF

Neogenin is a receptor mainly known for its roles during axon pathfinding. However, neogenin is expressed in neuronal precursors of ventricular and subventricular zones of the nervous system and recent work has shown that it regulates adult neurogenesis. Here, we generated an antibody against the sea lamprey neogenin to study its expression in the larval spinal cord.

View Article and Find Full Text PDF

Capturing a paradoxical embolism in real-time has been a challenge in recent literature. We present the unique case of a 33-year-old, G3P2 female at 8 weeks gestation presenting with dyspnea. An active thrombus through an undiagnosed patent foramen ovale was found requiring emergent surgical intervention with a positive outcome.

View Article and Find Full Text PDF

Access to deep-seated brain lesions (e.g., tumors, aneurysms, hematomas, and other malformations) is challenging due to the potential for retraction-induced injury.

View Article and Find Full Text PDF

In this Letter we discuss new soft theorems for the Goldstone-boson amplitudes with nonvanishing soft limits. The standard argument is that the nonlinearly realized shift symmetry leads to the vanishing of scattering amplitudes in the soft limit, known as the Adler zero. This statement involves certain assumptions of the absence of cubic vertices and the absence of linear terms in the transformations of fields.

View Article and Find Full Text PDF

Some neurons, especially in mammalian peripheral nervous system or in lower vertebrate or in vertebrate central nervous system (CNS) regenerate after axotomy, while most mammalian CNS neurons fail to regenerate. There is an emerging consensus that neurons have different intrinsic regenerative capabilities, which theoretically could be manipulated therapeutically to improve regeneration. Population-based comparisons between "good regenerating" and "bad regenerating" neurons in the CNS and peripheral nervous system of most vertebrates yield results that are inconclusive or difficult to interpret.

View Article and Find Full Text PDF

In the setting of cardio-oncology, evaluation for myocarditis is a growing indication for cardiovascular magnetic resonance (CMR). Treatment-related side effects of cancer therapies comprise the majority of myocarditis cases in cardio-oncology, and these are often secondary to anthracyclines and even the newer class of immune checkpoint inhibitors. Cardiotoxicity from cancer therapy represents an increasingly recognized etiology of myocarditis and when detected, warrants prompt management changes.

View Article and Find Full Text PDF

Following spinal cord trauma, axonal regeneration in the mammalian spinal cord does not occur and functional recovery may be further impeded by retrograde neuronal death. By contrast, lampreys recover after spinal cord injury (SCI) and axons re-connected to their targets in spinal cord. However, the identified reticulospinal (RS) neurons located in the lamprey brain differ in their regenerative capacities - some are good regenerators, and others are bad regenerators - despite the fact that they have analogous projection pathways.

View Article and Find Full Text PDF

We discuss noncollinear magnetic phenomena whose local order parameter is characterized by more than one spin vector. By focusing on the simple cases of 2D triangular and 3D pyrochlore lattices, we demonstrate that their low-energy theories can be described by a one-parametric class of sigma models continuously interpolating between the classical Heisenberg model and the principal chiral model Tr(∂_{a}U∂_{a}U^{†}) for all U∈SU(2). The target space can be viewed as a U(1) fibration over the CP(1) space.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating condition that leads to permanent disability because injured axons do not regenerate across the trauma zone to reconnect to their targets. A prerequisite for axonal regeneration will be the prevention of retrograde degeneration that could lead to neuronal death. However, the specific molecular mechanisms of axotomy-induced degeneration of spinal-projecting neurons have not been elucidated yet.

View Article and Find Full Text PDF

This paper describes a natural language processing (NLP)-based clinical decision support (CDS) system that is geared towards colon cancer care coordinators as the end users. The system is implemented using a metadata- driven Structured Query Language (SQL) function (discriminant function). For our pilot study, we have developed a training corpus consisting of 2,085 pathology reports from the VA Connecticut Health Care System (VACHS).

View Article and Find Full Text PDF

Spinal cord injury (SCI) in mammals leads to permanent loss of function because axons do not regenerate in the central nervous system (CNS). To date, treatments based on neutralizing inhibitory environmental cues, such as the myelin-associated growth inhibitors and chondroitin sulfate proteoglycans, or on adding neurotrophic factors, have had limited success in enhancing regeneration. Published studies suggested that multiple axon guidance cues (repulsive guidance molecule (RGM) family, semaphorins, ephrins, and netrins) persist in adult animals, and that their expression is upregulated after CNS injury.

View Article and Find Full Text PDF

Paralysis following spinal cord injury (SCI) is due to interruption of axons and their failure to regenerate. It has been suggested that the small GTPase RhoA may be an intracellular signaling convergence point for several types of growth-inhibiting extracellular molecules. Even if this is true in vitro, it is not clear from studies in mammalian SCI, whether the effects of RhoA manipulations on axon growth in vivo are due to a RhoA-mediated inhibition of true regeneration or only of collateral sprouting from spared axons, since work on SCI generally is performed with partial injury models.

View Article and Find Full Text PDF

After spinal cord injury (SCI) in mammals, injured axons fail to regenerate. By contrast, lampreys recover from complete spinal transection and axons regenerate selectively in their correct paths. Yet the large, identified reticulospinal neurons in the lamprey brain vary greatly in their regenerative abilities - some have high regeneration capacity (probability of regeneration >50%) and others have low regeneration capacity (<30%) - even though they have similar projection paths.

View Article and Find Full Text PDF

We use the connection between infrared (IR) renormalons and condensates in the operator product expansion for correlation functions to make predictions concerning the structure of singularities in the Borel plane for the perturbative series in quantum field theories with different levels of supersymmetry. The same conspiracy can be used for establishing the absence of condensates or IR renormalons in gauge theories with an IR conformal regime or gauge theories in the Higgs phase. The absence of the renormalon-induced factorial divergence implies that instanton contributions (where present) must be well defined.

View Article and Find Full Text PDF

We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization.

View Article and Find Full Text PDF

The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D(Q(2)) to the anomalous dimension of the matter superfields γ(α(s)(Q(2))). En route we prove another theorem: the absence of the so-called singlet contribution to D.

View Article and Find Full Text PDF

We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling that improves S/N by twofold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, normalized group area ratio, MLR normalization, weighted regression analysis, and data dissemination through the Yale protein expression database.

View Article and Find Full Text PDF

Here, we present a detailed protocol for the detection of activated caspase-8 in axotomized axons of the whole-mounted lamprey spinal cord. This method is based on the use of fluorochrome -labeled inhibitors of caspases (FLICA) in ex vivo tissue. We offer a very convenient vertebrate model to study the retrograde degeneration of descending pathways after spinal cord injury.

View Article and Find Full Text PDF

The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination.

View Article and Find Full Text PDF

After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators.

View Article and Find Full Text PDF

We discuss the low energy effective theory of gapless excitations of the mass vortices of systems similar to the Ginzburg-Landau description of superfluid helium-3 in the bulk B-phase. Our approach is to determine the vortex solution by considering a specific ansatz for the order parameter and minimizing the free energy. The conditions on the βi coefficients required for the stability of the various solutions for the order parameter are calculated.

View Article and Find Full Text PDF

It is generally believed that the spontaneous breaking of the Poincaré group by flux tubes (strings) generates only two zero modes localized on the string and associated with the spontaneous breaking of translational invariance (the so-called Low-Manohar argument). Being perfectly true in many instances this argument is nevertheless nonuniversal and has to be amended in the case of order parameters carrying spatial indices. We show that under certain circumstances additional zero (or quasizero) modes can appear due to spin symmetry.

View Article and Find Full Text PDF

Apoptosis is a major feature in neural development and important in traumatic diseases. The presence of active caspases is a widely accepted marker of apoptosis. We report here the development of a method to study neuronal apoptotic death in whole-mounted brain preparations using fluorochrome-labeled inhibitors of caspases (FLICA).

View Article and Find Full Text PDF