Although the recent emergence of decoupled water electrolysis prevents typical H/O mixing, the further development of decoupled water electrolysis has been confined by the lack of reliable redox mediator (RM) electrodes to support sustainable H production. As energy storage electrodes, layered double hydroxides (LDHs) possess inherently poor conductivity/stability, which can be improved by growing LDHs on graphene substrates in situ. The proper modification of the graphene surface structure can improve the electron transport and energy storage capacity of composite electrodes, while current methods are usually cumbersome and require high temperatures/chemical reagents.
View Article and Find Full Text PDFElectrochemical nitrate reduction reaction (NORR) is a promising approach to achieve remediation of nitrate-polluted wastewater and sustainable production of ammonia. However, it is still restricted by the low activity, selectivity and Faraday efficiency for ammonia synthesis. Herein, we propose an effective strategy to modulate the electrolyte microenvironment in electrical double layer (EDL) by mediating alkali metal cations in the electrolyte to enhance the NORR performance.
View Article and Find Full Text PDF