The heading date of rice is a crucial agronomic characteristic that influences its adaptability to different regions and its productivity potential. Despite the involvement of WRKY transcription factors in various biological processes related to development, the precise mechanisms through which these transcription factors regulate the heading date in rice have not been well elucidated. The present study identified OsWRKY11 as a WRKY transcription factor which exhibits a pivotal function in the regulation of the heading date in rice through a comprehensive screening of a clustered regularly interspaced palindromic repeats (CRISPR) ‒ CRISPR-associated nuclease 9 mutant library that specifically targets the WRKY genes in rice.
View Article and Find Full Text PDFLeaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint.
View Article and Find Full Text PDFStem Cell Res Ther
November 2020
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging.
View Article and Find Full Text PDFThe single-step modification of the nanostructured polyaniline (PANI)/glucose oxidase (GOD) enzyme on double-sided, screen-printed, flexible electrodes doped with Prussian blue (PB), has been achieved and successfully applied in continuous glucose monitoring in vivo, and its biocompatibility has been evaluated systematically. The proposed fabrication procedure is simple, low cost, and suitable for large-scale production. PB doped with carbon ink catalyzes the reduction of hydrogen peroxide (HO) in low-voltage conditions, which could help eliminate interferences.
View Article and Find Full Text PDF