Two-dimensional (2D) lead halide perovskite (LHP) nanoplatelets (NPLs) have recently emerged as promising materials for solar cells and light-emitting devices. The reduction of LHP dimensions introduces an abundance of surface defects, which can strongly influence the photophysical properties of these materials. However, an insightful understanding of the effect of surface defects on hot carrier (HC) relaxation, one of the important properties of LHP NPLs, is still inadequate.
View Article and Find Full Text PDFTriplet energy transfer (TET) from semiconductor quantum dots (QDs) is an emerging strategy for sensitizing molecular triplets that have great potential in many applications. Here, CdSe QDs with varying sizes and 1-pyrenecarboxylic acid (PCA) are selected as the triplet donor and acceptor, respectively, to study the TET and charge transfer dynamics as well as enhanced singlet oxygen (O) generation properties. The results from static and transient spectroscopy measurements demonstrate that both the TET and hole transfer occur at the QDs-PCA interface.
View Article and Find Full Text PDFTriplet energy transfer (TET) from semiconductor quantum dots (QDs) to molecular triplets has potential applications in photon up-conversion and singlet oxygen generation. Here, we have constructed a complex consisting of CdTe QDs as the donor and 9-anthracenecarboxylic acid (ACA) as the triplet acceptor, and studied the TET pathways and enhanced singlet oxygen generation properties. The results from steady-state and time-resolved spectroscopy demonstrate efficient TET with a total efficiency of over 80% from photoexcited CdTe QDs to ACA.
View Article and Find Full Text PDFBackground: Translocator protein (TP) is related to inflammation and is involved in brain injury. The objective of this study was to ascertain whether serum TP concentrations are associated with the severity and prognosis of traumatic brain injury (TBI).
Methods: We quantified the serum concentrations of TP in 106 healthy controls and 106 patients with severe TBI.
Visfatin is a newly identified pro-inflammatory adipokine and a genetic polymorphism -1535 C>T located in the visfatin gene promoter has been suggested to be associated with the regulation of visfatin expression in some inflammatory illness. However, there were some conflicting results regarding whether this variant is functional or not. This study aimed to examine the relations of the -1535 C>T single nucleotide polymorphism (SNP) of visfatin gene to the plasma visfatin and C-reactive protein concentrations in traumatic brain injury (TBI).
View Article and Find Full Text PDFHigher plasma visfatin concentration has been associated with ischemic stroke. Thus, we sought to investigate change in plasma visfatin level after traumatic brain injury and to evaluate its relation with disease outcome. Seventy-six healthy controls and 98 patients with acute severe traumatic brain injury were recruited.
View Article and Find Full Text PDFWe experimentally investigate the differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength as a function of irradiated laser energy. The results show that when laser energy absorbed by the silicon material is the same, laser pulses with a shorter wavelength can form the surface-microstructured silicon with less laser energy, while the corresponding spike height is much lower than that of laser pulses with a longer wavelength. This is because the penetration depth of the laser pulses increases exponentially at the increase of the laser wavelength.
View Article and Find Full Text PDFWe experimentally demonstrate that, under the same laser fluence, there exists an optimal proportional relation between the laser power and pulse number for the fabrication of surface-microstructured silicon. During this fabrication process, the pulse number represents the interaction time between the laser and the silicon, which determines the depth of energy transferred into the inner part of the material, while the laser power determines the ablation and volatilization rate of the silicon. The proper combination of laser power and pulse number can ablate the material on the silicon surface effectively and have enough time to transfer the energy into the deep layer, which can produce microstructured silicon with a high spike.
View Article and Find Full Text PDF