Glioblastomas (GBMs) are highly aggressive brain tumors that have developed resistance to currently available conventional therapies, including surgery, radiation, and systemic chemotherapy. In this study, we investigated the safety of a live attenuated Japanese encephalitis vaccine strain (JEV-LAV) virus as an oncolytic virus for intracerebral injection in mice. We infected different GBM cell lines with JEV-LAV to investigate whether it had growth inhibitory effects on GBM cell lines in vitro.
View Article and Find Full Text PDFtumor vaccine is a potential cancer therapy due to their advantages in induction of antitumor immune responses. Oncolytic virotherapy utilizes natural or engineered oncolytic viruses to kill tumors selectively, representing a promising tumor vaccine for cancer immunotherapy. In addition to direct oncolysis, oncolytic viruses elicit potent and durable antitumor immune responses by induction of immunogenic cell death of tumors.
View Article and Find Full Text PDFAccumulating evidence indicates that hepatitis B virus X protein (HBx) plays a key role in HBV-related hepatocellular carcinoma (HCC) aggressiveness; however, the underlying mechanisms are not entirely clear. Long non-coding RNAs (lncRNAs), which participate in the regulation of diverse biological processes, may be critical for the function of HBx. Our research indicated that HBx induced changes in the expression of numerous lncRNAs and implicated the novel lncRNA RP11-241J12.
View Article and Find Full Text PDFPreclinical and clinical studies have validated the antitumor effects of several oncolytic viruses (OVs). However, the efficacy of OVs is limited when they are administered as monotherapies. Combination therapy is a promising direction for oncolytic virotherapy in the future.
View Article and Find Full Text PDFTumor vaccines that induce effective and sustained antitumor immunity are highly promising for cancer therapy. However, the antitumor potential of these vaccines is weakened due to the immunosuppressive characteristics of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the TME; they play an important role in tumor growth, metastasis, immunosuppression, and drug resistance.
View Article and Find Full Text PDFSolid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME).
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2020
To ensure the high purity and biological activity of the adenovirus vector to be used for clinical applications, a stable and linearly scalable preparation method is highly imperative. During the adenovirus-harvesting process, the Triton X-100-based lysis method possesses the advantages of higher efficiency as well as easier linearization and amplification. Most Triton X-100 can be removed from the adenovirus sample by chromatographic purification.
View Article and Find Full Text PDFWith the rapid development of gene therapy, gene-based medicine with adenovirus as vectors has become a new method for disease treatment. However, there are still enormous challenges in the large-scale production of adenoviruses for clinical use. Recent reports show that ion-exchange chromatography (IEC) is an effective tool for the isolation and purification of adenovirus.
View Article and Find Full Text PDF