Accurate counting of cereals crops, e.g., maize, rice, sorghum, and wheat, is crucial for estimating grain production and ensuring food security.
View Article and Find Full Text PDFThree-dimensional (3D) phenotyping is important for studying plant structure and function. Light detection and ranging (LiDAR) has gained prominence in 3D plant phenotyping due to its ability to collect 3D point clouds. However, organ-level branch detection remains challenging due to small targets, sparse points, and low signal-to-noise ratios.
View Article and Find Full Text PDFAutomated guard cell detection and measurement are vital for understanding plant physiological performance and ecological functioning in global water and carbon cycles. Most current methods for measuring guard cells and stomata are laborious, time-consuming, prone to bias, and limited in scale. We developed StoManager1, a high-throughput tool utilizing geometrical, mathematical algorithms, and convolutional neural networks to automatically detect, count, and measure over 30 guard cell and stomatal metrics, including guard cell and stomatal area, length, width, stomatal aperture area/guard cell area, orientation, stomatal evenness, divergence, and aggregation index.
View Article and Find Full Text PDFAccurate counting of maize tassels is essential for monitoring crop growth and estimating crop yield. Recently, deep-learning-based object detection methods have been used for this purpose, where plant counts are estimated from the number of bounding boxes detected. However, these methods suffer from 2 issues: (a) The scales of maize tassels vary because of image capture from varying distances and crop growth stage; and (b) tassel areas tend to be affected by occlusions or complex backgrounds, making the detection inefficient.
View Article and Find Full Text PDFPlant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis.
View Article and Find Full Text PDFWheat yield and grain protein content (GPC) are two main optimization targets for breeding and cultivation. Remote sensing provides nondestructive and early predictions of yield and GPC, respectively. However, whether it is possible to simultaneously predict yield and GPC in one model and the accuracy and influencing factors are still unclear.
View Article and Find Full Text PDFMicromachines (Basel)
February 2022
This paper proposes a novel microgripper with two working modes. The microgripper is designed with symmetric structure and each part is actuated by one piezoelectric actuator, respectively. To achieve desired output displacement, each part of the microgripper is designed with three-stage amplification mechanism to amplify the displacement of the PZT actuator.
View Article and Find Full Text PDFPlants are often attacked by various pathogens during their growth, which may cause environmental pollution, food shortages, or economic losses in a certain area. Integration of high throughput phenomics data and computer vision (CV) provides a great opportunity to realize plant disease diagnosis in the early stage and uncover the subtype or stage patterns in the disease progression. In this study, we proposed a novel computational framework for plant disease identification and subtype discovery through a deep-embedding image-clustering strategy, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm (WDM-tSNE).
View Article and Find Full Text PDFPlant phenomics bridges the gap between traits of agricultural importance and genomic information. Limitations of current field-based phenotyping solutions include mobility, affordability, throughput, accuracy, scalability, and the ability to analyze big data collected. Here, we present a large-scale phenotyping solution that combines a commercial backpack Light Detection and Ranging (LiDAR) device and our analytic software, CropQuant-3D, which have been applied jointly to phenotype wheat (Triticum aestivum) and associated 3D trait analysis.
View Article and Find Full Text PDFPlant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn.
View Article and Find Full Text PDFVegetation maps are important sources of information for biodiversity conservation, ecological studies, vegetation management and restoration, and national strategic decision making. The current Vegetation Map of China (1:1000000) was generated by a team of more than 250 scientists in an effort that lasted over 20 years starting in the 1980s. However, the vegetation distribution of China has experienced drastic changes during the rapid development of China in the last three decades, and it urgently needs to be updated to better represent the distribution of current vegetation types.
View Article and Find Full Text PDFBackground: Precision agriculture is an emerging research field that relies on monitoring and managing field variability in phenotypic traits. An important phenotypic trait is biomass, a comprehensive indicator that can reflect crop yields. However, non-destructive biomass estimation at fine levels is unknown and challenging due to the lack of accurate and high-throughput phenotypic data and algorithms.
View Article and Find Full Text PDFPlant Methods
February 2019
Background: Maize ( L.) is the third most consumed grain in the world and improving maize yield is of great importance of the world food security, especially under global climate change and more frequent severe droughts. Due to the limitation of phenotyping methods, most current studies only focused on the responses of phenotypes on certain key growth stages.
View Article and Find Full Text PDFThe rapid development of light detection and ranging (Lidar) provides a promising way to obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate 3D laser points. Recently, Lidar has been widely used to obtain phenotype data in the greenhouse and field with along other sensors. Individual maize segmentation is the prerequisite for high throughput phenotype data extraction at individual crop or leaf level, which is still a huge challenge.
View Article and Find Full Text PDF