Large-area oriented ZnO nanoarrays (including nanowire, nanorod, and nanotube) on ITO glass substrates are synthesized via the simple hydrothermal, electrodeposition, and electrochemical etching approach. The morphology of ZnO nanoarrays is controlled by adjusting the reaction temperature, reaction time, and current density. The scanning and transmission electron microscopy (SEM and TEM) results indicate the successful preparation of large-area oriented ZnO nanoarrays with different types, and the energy-dispersive X-microanalysis spectrum (EDS) and X-ray diffraction (XRD) results confirm that the composition of the obtained nanoarrays is ZnO.
View Article and Find Full Text PDFSelf-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized.
View Article and Find Full Text PDFBackground: According to the Global Burden of Disease Study 2017, smoking is one of the leading four risk factors contributing to deaths in China. We aimed to evaluate the associations of smoking with all-cause mortality in a Chinese rural population.
Methods: Male participants over age 45 (n = 5367) from a large familial aggregation study in rural China, were included in the current analyses.