Gene drive technology has the potential to address major biological challenges. Well-studied homing suppression drives have been shown to be highly efficient in Anopheles mosquitoes, but for other organisms, lower rates of drive conversion prevent elimination of the target population. To tackle this issue, we propose a gene drive design that has two targets: a drive homing site where drive conversion takes place, and a distant site where cleavage induces population suppression.
View Article and Find Full Text PDFCRISPR homing gene drives have considerable potential for managing populations of medically and agriculturally significant insects. They operate by Cas9 cleavage followed by homology-directed repair, copying the drive allele to the wild-type chromosome and thus increasing in frequency and spreading throughout a population. However, resistance alleles formed by end-joining repair pose a significant obstacle.
View Article and Find Full Text PDFHoming-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2022
Under the optimal conditions of immobilization and fermentation, the highest LA yield of 0.966 ± 0.006 g/g fructose and production rate of 2.
View Article and Find Full Text PDFIn this study, Box-Behnken design was applied to optimize the initial concentrations of 4 cations for L-lactic acid production from fructose by homologous batch fermentation of Lactobacillus pentosus cells. The optimum initial cation concentrations were obtained as 6.542 mM Mg, 3.
View Article and Find Full Text PDF