Publications by authors named "Shibo Cai"

Ankle moment plays an important role in human gait analysis, patients' rehabilitation process monitoring, and the human-machine interaction control of exoskeleton robots. However, current ankle moment estimation methods mainly rely on inverse dynamics (ID) based on optical motion capture system (OMC) and force plate. These methods rely on fixed instruments in the laboratory, which are difficult to be applied to the control of exoskeleton robots.

View Article and Find Full Text PDF

To analyze the structural characteristics of a human hand, data collection gloves were worn for typical grasping tasks. The hand manipulation characteristics, finger end pressure, and finger joint bending angle were obtained via an experiment based on the Feix grasping spectrum. Twelve types of tendon rope transmission paths were designed under the N + 1 type tendon drive mode, and the motion performance of these 12 types of paths applied to tendon-driven fingers was evaluated based on the evaluation metric.

View Article and Find Full Text PDF

Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data.

View Article and Find Full Text PDF

The routine use of prosthetic hands significantly enhances amputees' daily lives, yet it often introduces cognitive load and reduces reaction speed. To address this issue, we introduce a wearable semi-autonomous hierarchical control framework tailored for amputees. Drawing inspiration from the visual processing stream in humans, a fully autonomous bionic controller is integrated into the prosthetic hand control system to offload cognitive burden, complemented by a Human-in-the-Loop (HIL) control method.

View Article and Find Full Text PDF

Home service robots operating indoors, such as inside houses and offices, require the real-time and accurate identification and location of target objects to perform service tasks efficiently. However, images captured by visual sensors while in motion states usually contain varying degrees of blurriness, presenting a significant challenge for object detection. In particular, daily life scenes contain small objects like fruits and tableware, which are often occluded, further complicating object recognition and positioning.

View Article and Find Full Text PDF

Robotic hands have the potential to perform complex tasks in unstructured environments owing to their bionic design, inspired by the most agile biological hand. However, the modeling, planning and control of dexterous hands remain unresolved, open challenges, resulting in the simple movements and relatively clumsy motions of current robotic end effectors. This paper proposed a dynamic model based on generative adversarial architecture to learn the state mode of the dexterous hand, reducing the model's prediction error in long spans.

View Article and Find Full Text PDF

Compared to magnetorheological fluid, magnetorheological gel has better anti-settling performance and stability. Therefore, magnetorheological gel is suitable for devices that can meet operational requirements in all aspects after long-term storage, such as the anti-recoil application of weapons. To study this in-depth, the mechanism of the influence of magnetorheological gel micro-magnetic-mechanical properties on the macro-output damping mechanics of the damper, a parallel plate model of the mixed flow mode composed of Couette shear flow and Poiseuille pressure flow was established.

View Article and Find Full Text PDF

Background: The complex in-hand manipulation puts forward higher requirements for the dexterity and joint control accuracy of the prosthetic hand. The tendon-sheath drive has important application potential in the fields of prosthetic hand to obtain higher dexterity. However, the existing control methods of tendon-sheath driven joint are mainly open-loop compensation based on friction model, which makes it difficult to achieve high-precision joint control.

View Article and Find Full Text PDF

We have noticed some errors in the above-titled paper (DOI: 10.1109/TNSRE.2019.

View Article and Find Full Text PDF

Since the first robotic exoskeleton was developed in 1960, this research field has attracted much interest from both the academic and industrial communities resulting in scientific publications, prototype developments and commercialized products. In this article, to document the progress in and current status of this field, we performed a bibliometric analysis. This analysis evaluated the publications in the field of robotic exoskeletons from 1990 to July 2019 that were retrieved from the Science Citation Index Expanded database.

View Article and Find Full Text PDF