We designed and demonstrated a tri-layer SiN/SiO photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< -50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.
View Article and Find Full Text PDFThis paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (SiN) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing.
View Article and Find Full Text PDFWe design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.
View Article and Find Full Text PDFWe demonstrate compact silicon-on-insulator-based arrayed waveguide gratings (AWGs) for (de)multiplexing applications with a large free spectral range (FSR). The large FSR is obtained by reducing the arm aperture pitch without changing the device footprint. We demonstrate 4 × 100 GHz, 8 × 250 GHz, and 12 × 400 GHz AWGs with FSRs of 6.
View Article and Find Full Text PDFAthermal arrayed waveguide gratings (AWGs) in silicon-on-insulator (SOI) are experimentally demonstrated for the first time to our knowledge. By using narrowed arrayed waveguides, and then overlaying a polymer layer, the wavelength temperature dependence of the AWGs is successfully reduced to -1.5 pm/°C, which is more than 1 order of magnitude less than that of normal SOI AWGs.
View Article and Find Full Text PDF