Publications by authors named "Shibin Chacko"

The emergence of drug resistant Mycobacterium tuberculosis, the causative agent of tuberculosis, demands the development of new drugs and new drug targets. We have recently reported that the d-phenylalanine benzoxazole Q112 has potent antibacterial activity against this pathogen with a distinct mechanism of action from other antimycobacterial agents. Q112 and previously reported derivatives were unstable in plasma and no free compound could be observed.

View Article and Find Full Text PDF

New drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole displays potent antibacterial activity against () in multiple media and in macrophage infections. A metabolomic profiling indicates that has a unique mechanism of action.

View Article and Find Full Text PDF

Many bacterial pathogens, including , require inosine 5'-monophosphate dehydrogenase (IMPDH) for infection, making this enzyme a promising new target for antibiotics. Although potent selective inhibitors of bacterial IMPDHs have been reported, relatively few have displayed antibacterial activity. Here we use structure-informed design to obtain inhibitors of IMPDH (IMPDH) that have potent antibacterial activity (minimal inhibitory concentrations less than 2 μM) and low cytotoxicity in mammalian cells.

View Article and Find Full Text PDF

The microtubule-associated protein tau promotes the stabilization of the axonal cytoskeleton in neurons. In several neurodegenerative diseases, such as Alzheimer's disease, tau has been found to dissociate from microtubules, leading to the formation of pathological aggregates that display an amyloid fibril-like structure. Recent structural studies have shown that the tau filaments isolated from different neurodegenerative disorders have structurally distinct fibril cores that are specific to the disease.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) has infected more than 80% of the population. Reactivation of the virus causes diseases ranging in severity from benign cold sores to fatal encephalitis. Current treatments involve viral DNA replication inhibitors, but the emergence of drug-resistant mutants is observed frequently, highlighting the need for novel antiviral therapies.

View Article and Find Full Text PDF

New drugs and molecular targets are urgently needed to address the emergence and spread of drug-resistant tuberculosis. Mycobacterium tuberculosis ( Mtb) inosine 5'-monophosphate dehydrogenase 2 ( MtbIMPDH2) is a promising yet controversial potential target. The inhibition of MtbIMPDH2 blocks the biosynthesis of guanine nucleotides, but high concentrations of guanine can potentially rescue the bacteria.

View Article and Find Full Text PDF

is the causative agent of tularemia and a potential biowarfare agent. The virulence of is decreased by deletion of , the gene encoding IMP dehydrogenase (IMPDH), suggesting that this enzyme is a target for antibacterial design. Here we report that growth is blocked by inhibitors of bacterial IMPDHs.

View Article and Find Full Text PDF

Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post-synthesis via amide, ester or triazole linkages.

View Article and Find Full Text PDF

An efficient synthesis of deoxygalactonojirimycin and deoxyaltronojirimycin through the use of proline catalyzed asymmetric α-aminoxylation of a higher homologue of Garner's aldehyde, derived from l-aspartic acid, is reported. The method is also used for a highly diastereoselective synthesis of the N-Boc derivative of (2S,3S)-3-hydroxypipecolic acid. The configuration of the proline catalyst used for the asymmetric aminoxylation step ultimately controls the absolute configuration of three adjacent stereogenic centers in the final products.

View Article and Find Full Text PDF