Deciphering the origins of the chemistry that supports life has frequently centered on determining prebiotically plausible paths that produce the molecules found in biology. What has been less investigated is how the energy released from the breakdown of foodstuff is coupled to the persistence of the protocell. To gain better insight into how such coupled chemistry could have emerged prebiotically, we probed the reactivity of the ribodinucleotide NAD with small organic molecules that were previously identified as potential constituents of protometabolism.
View Article and Find Full Text PDFThis study convincingly demonstrates a unique example of the self-assembly of a naphthalene diimide (NDI)-appended peptide into a fluorescent J-aggregate in aqueous media. Moreover, this aggregated species shows a remarkable yellow fluorescence in solid state, an unusual phenomenon for NDI-based compounds. The aggregated species has been characterized using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, X-ray diffraction, time-correlated single proton counting (TCSPC), UV-vis, and photoluminescence studies.
View Article and Find Full Text PDFThe histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag complex C2 is too large in size to act as an intercalator.
View Article and Find Full Text PDFBio-organometallic ferrocene-containing amino acids and peptides have been reported to form gels and are interesting to study due to their structural properties and applications for biological purposes. In this study, a ferrocene-dicarboxylic acid derivative of the dipeptide tryptophan-tryptophan was investigated. The indolic nitrogen in the amino acid tryptophan is important for biological functions due to its role in hydrogen bonding.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2017
Homochirality in peptides is crucial in sustaining "like-like" intermolecular interactions that allow the formation of assemblies and aggregates and is ultimately responsible for the resulting material properties. With the help of a series of stereoisomers of the tripeptide F-F-L, we demonstrate the critical role that peptide stereochemistry plays in the self-assembly of peptides, guided by molecular recognition, and for self-sorting. Homochiral self-assemblies are thermally and mechanically more robust compared to heterochiral self-assemblies.
View Article and Find Full Text PDFA triphenylalanine-based superhydrogel shows automatic syneresis (self-compressing properties) with time and this self-shrinking behavior has been successfully utilized to remove toxic lead ions and organic dyes from waste-water efficiently with the ability to re-use for a few times.
View Article and Find Full Text PDFThis study presents a few bis(histidine) ligands working to build a small peptidic model system of zinc structural sites. Ferrocene-peptide conjugates Fc[CO-His(Trt)-His(Trt)-OMe] (3), Fc[CO-His(Trt)-Asp(OMe)-OMe] (4), and Fc[CO-His(Trt)-Glu(OMe)-OMe] (5) were synthesized and characterized spectroscopically. H-NMR and IR spectroscopic studies reveal hydrogen bonding interactions and while more detailed circular dichroism studies show a 1,2'-P helical "Herrick conformation" for Fc-conjugates 4 and 5, we discovered M-helical chirality in Fc-peptide 3.
View Article and Find Full Text PDFTwo-component fluorescent hydrogels have been discovered, containing the mixtures of naphthalene diimide (NDI)-conjugated peptide-functionalized bola-amphiphile and primary amines with long alkyl chains at physiological pH 7.46. The aggregation-induced enhanced emission associated with an NDI-appended peptide in aqueous medium is rare, as water is known to be a good quencher of fluorescence.
View Article and Find Full Text PDFSynthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating d-amino acid residues, indicating their potential use for drug delivery in the future.
View Article and Find Full Text PDFFluorescence associated with J-aggregated naphthalenediimides (NDIs) is common. However, in this study an NDI based synthetic peptide molecule is found to form a fluorescent H-aggregate in a chloroform (CHCl3)-methylcyclohexane (MCH) mixture. An attempt has been made to explain the unusual fluorescence property of this H-aggregated NDI derivative.
View Article and Find Full Text PDFA dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5.
View Article and Find Full Text PDFA naphthalenediimide (NDI)-based new gelator molecule has been discovered, the molecule forms interesting J/H-aggregated species depending on solvents (aliphatic/aromatic) and remarkably, the fluorescence of the gel phase materials is nicely tuned according to the electron donating capacity of the aromatic solvent.
View Article and Find Full Text PDFA pyridine containing amino acid based gelator forms gel in aqueous media in the presence of hydrochloric acid and the chloride ion is found to be very selective for gelation. The gelator is successfully applied for the detection and trapping of hydrogen chloride gas and this indicates its probable application for removing hazardous HCl gas from the environment.
View Article and Find Full Text PDFA naphthalenediimide (NDI)-based synthetic peptide molecule forms gels in a particular solvent mixture (chloroform/aromatic hydrocarbon, 4:1) through charge-transfer (CT) complex formation; this is evident from the corresponding absorbance and fluorescence spectra at room temperature. Various aromatic hydrocarbon based solvents, including benzene, toluene, xylene (ortho, meta and para) and mesitylene, have been used for the formation of the CT complex. The role of different solvent molecules with varying electron-donation capacities in the formation of CT complexes has been established through spectroscopic and computational studies.
View Article and Find Full Text PDFA series of amphiphilic tyrosine based self-healable, multi-stimuli responsive metallo-hydrogels have been discovered. Formation of these hydrogels is highly selective to Ni(2+) ions. The self-healing property and the stiffness of these metallo-hydrogels can be tuned by varying the chain length of the corresponding gelator amphiphile.
View Article and Find Full Text PDFNaphthalenediimide appended peptide based self-assembly was studied. Interestingly, an aggregation induced drastic change in the fluorescence property and gel formation were observed depending on the solvent composition (chloroform : methylcyclohexane) at a fixed concentration of 1.6 mM at room temperature.
View Article and Find Full Text PDFAn N-terminally Boc (tert-butyloxycarbonyl) group-protected synthetic tripeptide (Boc-Phe-Phe-Ala-OH) has been found to form a translucent hydrogel in basic aqueous medium. This hydrogel material has been characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy, differential scanning calorimetric, X-ray diffraction (XRD), and rheological studies. FE-SEM and TEM studies have revealed the formation of a nanofibrillar network structure upon gelation.
View Article and Find Full Text PDF