Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separated genes encoding tRNA halves to generate suppressive variants of missing tRNAs.
View Article and Find Full Text PDFThe extensive research for predicting highly expressed genes in plant genome sequences has been going on for decades. The codon usage pattern of genes in genome is a classical topic for plant biologists for its significance in the understanding of molecular plant biology. Here we have used a gene expression profiling methodology based on the score of modified relative codon bias (MRCBS) to elucidate expression pattern of genes in .
View Article and Find Full Text PDFThe extensive research for predicting highly expressed genes in plant genome sequences has been going on for decades. The codon usage pattern of genes in Arabidopsis thaliana genome is a classical topic for plant biologists for its significance in the understanding of molecular plant biology. Here we have used a gene expression profiling methodology based on the score of modified relative codon bias (MRCBS) to elucidate expression pattern of genes in Arabidopsis thaliana.
View Article and Find Full Text PDF