The rice GA biosynthetic gene OsGA3ox1 has been proposed to regulate pollen development through the gametophytic manner, but cellular characterization of its mutant pollen is lacking. In this study, three heterozygotic biallelic variants, "-3/-19", "-3/-2" and "-3/-10", each containing one null and one 3bp-deletion allele, were obtained by the CRISPR/Cas9 technique for the functional study of OsGA3ox1. The three homozygotes, "-19/-19", "-2/-2" and "-10/-10", derived from heterozygotic variants, did not affect the development of most vegetative and floral organs but showed a significant reduction in seed-setting rate and in pollen viability.
View Article and Find Full Text PDFAuxin is well known to stimulate coleoptile elongation and rapid seedling growth in the air. However, its role in regulating rice germination and seedling establishment under submergence is largely unknown. Previous studies revealed that excessive levels of indole-3-acetic acid(IAA) frequently cause the inhibition of plant growth and development.
View Article and Find Full Text PDFBackground: GA 2-oxidases (GA2oxs) are involved in regulating GA homeostasis in plants by inactivating bioactive GAs through 2β-hydroxylation. Rice GA2oxs are encoded by a family of 10 genes; some of them have been characterized, but no comprehensive comparisons for all these genes have been conducted.
Results: Rice plants with nine functional GA2oxs were demonstrated in the present study, and these genes not only were differentially expressed but also revealed various capabilities for GA deactivation based on their height-reducing effects in transgenic plants.