Publications by authors named "Shiau Ying Tham"

Graphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spacers that reduce the stacking of graphene and improve the electrochemical performance of the material.

View Article and Find Full Text PDF

Despite recent in advances in the management of nasopharyngeal carcinoma (NPC), development of targeted therapy remains challenging particularly in patients with recurrent or metastatic disease. To search for clinically relevant targets for the treatment of NPC, we carried out parallel genome-wide functional screens to identified essential genes that are required for NPC cells proliferation and cisplatin resistance. We identified lymphocyte-specific protein tyrosine kinase (LCK) as a key vulnerability of both proliferation and cisplatin resistance.

View Article and Find Full Text PDF

Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem.

View Article and Find Full Text PDF

Highly sensitive and selective immunosensors that can detect disease biomarkers at ultra-low levels in early stages are urgently needed to reduce mortality risks. A facile and efficient approach using sonochemical-assisted solvent graphene exfoliation and a hydrothermal synthesis method has been used to prepare graphene/titanium dioxide (G/TiO) nanocomposites. Nanocomposites containing different ratios of graphene and TiO precursors were prepared to determine the optimum composition of G/TiO that has the highest conductivity and electrocatalytic properties.

View Article and Find Full Text PDF