Publications by authors named "Shiao-Chun Tu"

Vibrio harveyi NADPH-FMN oxidoreductase (FRP) catalyzes flavin reduction by NADPH. In comparing amino acid sequence and crystal structure with Escherichia coli NfsA, residues N134, R225, R133, K167, and R15 were targeted for investigation of their possible roles in the binding and utilization of the NADPH substrate. By mutation of each of these five residues to an alanine, steady-state rate analyses showed that the variants K167A and R15A had apparently greatly increased K(m,NADPH) and reduced k(cat)/K(m,NADPH), whereas little or much more modest changes were found for the other variants.

View Article and Find Full Text PDF

A new approach to alter bacterial bioluminescence color was developed by fusing Vibrio harveyi luciferase with the coral Discosoma sp. fluorescent protein mOrange, a homolog of the Aequorea green fluorescent protein. Attachment of mOrange to the N- or C-terminus of luciferase α or β subunit, via a 5 or 10 residue linker, produced fully active fusion enzymes.

View Article and Find Full Text PDF

Our earlier studies have shown that the Vibrio harveyi flavin reductase FRP undergoes a monomer-dimer equilibrium, and luciferase forms a functional complex with the FRP monomer but not significantly with the dimer. This work is aimed at further investigating the nature and regulation of FRP subunit interactions by computation and site-directed mutagenesis approaches. In silico mutations of a number of residues were performed, and energetic analyses led us to target residue E99, which interacts directly with R113 and R225 from the second subunit of the FRP homodimer, for detailed investigation.

View Article and Find Full Text PDF

Luminous bacteria contain several species of flavin reductases, which catalyze the reduction of FMN using NADH and/or NADPH as a reductant. The reduced FMN (i.e.

View Article and Find Full Text PDF

Vibrio harveyi luciferase and flavin reductase FRP are, together, a two-component monooxygenase couple. The reduced flavin mononucleotide (FMNH2) generated by FRP must be supplied, through either free diffusion or direct transfer, to luciferase as a substrate. In contrast, single-component bifunctional monooxygenases each contains a bound flavin cofactor and does not require any flavin addition to facilitate catalysis.

View Article and Find Full Text PDF

A convenient, sensitive assay for measurement of in vivo missense translational errors is reported that uses luciferase activity generated by mistranslation of a gene encoding an inactive mutant alpha chain of the Vibrio harveyi enzyme. Mutations were introduced at alpha45 His, a position known to be highly intolerant of amino acids other than histidine. To normalize for any variations in expression level, the concentration of wild-type luciferase alphabeta dimer was determined by a novel assay using co-refolding of active/wild-type beta enzyme subunits with inactive alpha subunits in lysate with an excess of exogenously added active alpha subunits.

View Article and Find Full Text PDF

The Vibrio harveyi NADPH-specific flavin reductase FRP follows a ping-pong mechanism but switches to a sequential mechanism in the luciferase-coupled reaction. The bound FMN co-isolated with FRP, while acting as a genuine cofactor in the single-enzyme reaction, functions in the luciferase-coupled reaction as a prebound substrate and is directly transferred to luciferase once it is reduced [Lei, B., and Tu, S.

View Article and Find Full Text PDF

Several lines of evidence have been reported previously to document the ability of the Vibrio harveyi NADPH-specific flavin reductase FRP to directly transfer reduced riboflavin-5'-phosphate to luciferase for bioluminescence. This study aimed at characterizing further the kinetic properties of FRP in such a direct channeling system and investigating whether the complete direct transfer of reduced flavin was the exclusive pathway in the FRP:luciferase coupled bioluminescence reaction. To these ends, a new kinetic approach of oxygen variation was employed.

View Article and Find Full Text PDF

This work aimed at identifying essential residues on the alpha subunit of Vibrio harveyi luciferase and elucidating their functional roles. Four conserved alpha-subunit residues at the proposed luciferase active site were initially mutated to Ala. Screening of the in vivo bioluminescence of cells expressing these mutated luciferases allowed the work to focus on alphaGlu328 for additional mutations to Phe, Leu, Gln, His, and Asp.

View Article and Find Full Text PDF

Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr.

View Article and Find Full Text PDF

Vibrio harveyi NADPH:FMN oxidoreductase P (FRP(Vh)) is a homodimeric enzyme having a bound FMN per enzyme monomer. The bound FMN functions as a cofactor of FRP(Vh) in transferring reducing equivalents from NADPH to a flavin substrate in the absence of V. harveyi luciferase but as a substrate for FRP(Vh) in the luciferase-coupled bioluminescent reaction.

View Article and Find Full Text PDF

The excited state of 4a-hydroxy-4a,5-dihydroFMN has been postulated to be the emitter in the bacterial bioluminescence reaction. However, while the bioluminescence quantum yield of the luciferase emitter is about 0.16, chemiluminescence and fluorescence quantum yields of earlier flavin models mimicking the luciferase emitter were no more than 10(-5).

View Article and Find Full Text PDF

The 4a-hydroperoxy-4a,5-dihydroFMN intermediate (II or HFOOH) of Vibrio harveyi luciferase is known to transform from a low quantum yield IIx to a high quantum yield (lambdamax 485 nm, uncorrected) IIy fluorescent species on exposure to excitation light. Similar results were observed with II prepared from the alphaH44A luciferase mutant, which is very weak in bioluminescence activity. Because of the rapid decay of the alphaH44A II, its true fluorescence was obscured by the more intense 520 nm fluorescence (uncorrected) from its decay product oxidized flavin mononucleotide (FMN).

View Article and Find Full Text PDF

Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue.

View Article and Find Full Text PDF

The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase.

View Article and Find Full Text PDF

Conservation of energetically "expensive" metabolites is facilitated by enzymatic intra- and intermolecular channeling mechanisms. Our previous in vitro kinetic studies indicate that Vibrio harveyi reduced nicotinamide adenine dinucleotide phosphate-flavin mononucleotide (NADPH-FMN) oxidoreductase flavin reductase P (FRP) can transfer reduced riboflavin 5'-phosphate (FMNH2) to bacterial luciferase by direct channeling. However, no evidence has ever been reported for such an FMNH2 channeling between these two enzymes in vivo.

View Article and Find Full Text PDF

Isoniazid (INH) remains one of the key drugs used to control tuberculosis, with the enoyl-AcpM reductase InhA being the primary target. However, based on the observation that INH-treated Mycobacterium tuberculosis overproduces KasA, an enzyme involved in the biosynthesis of mycolic acids, and induces the formation of a covalent complex consisting of AcpM, KasA, and INH, it has been proposed that KasA represents the primary target of INH. However, the relevance of this complex to INH action remains obscure.

View Article and Find Full Text PDF

Mycobacterium tuberculosis KatG catalyzes the activation of the antitubercular agent isoniazid to yield an inhibitor targeting enoyl reductase (InhA). However, no firm biochemical link between many KatG variants and isoniazid resistance has been established. In the present study, six distinct KatG variants identified in clinical Mycobacterium tuberculosis isolates resistant to isoniazid were generated by site-directed mutagenesis, and the recombinant mutant proteins (KatG(A110V), KatG(A139P), KatG(S315N), KatG(L619P), KatG(L634F), and KatG(D735A)) were purified and characterized with respect to their catalase-peroxidase activities (in terms of k(cat)/K(m)), rates of free-radical formation from isoniazid oxidation, and, moreover, abilities to activate isoniazid.

View Article and Find Full Text PDF

A direct transfer of the reduced flavin mononucleotide (FMNH(2)) cofactor of Vibrio harveyi NADPH:FMN oxidoreductase (FRP) to luciferase for the coupled bioluminescence reaction has been indicated by recent kinetic studies [Lei, B., and Tu, S.-C.

View Article and Find Full Text PDF

Residues 257-291 of the Vibrio harveyi bacterial luciferase alpha subunit comprise a highly conserved, protease-labile, disordered loop region, most of which is unresolved in the previously determined X-ray structures of the native enzyme. This loop region has been shown to display a time- dependent proteolysis resistance upon single catalytic turnover and was postulated to undergo conformational changes during catalysis ([AbouKhair, N. K.

View Article and Find Full Text PDF