Publications by authors named "Shiao W Chan"

MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells.

View Article and Find Full Text PDF

Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen.

View Article and Find Full Text PDF

The CD8+ T cell response to the intracellular parasite varies dramatically between mouse strains, resulting in stark differences in control of the parasite. Protection in BALB/c mice can be attributed to an unusually strong and protective MHC-1 L-restricted CD8+ T cell response directed against a peptide derived from the parasite antigen GRA6. The MHC-1 L molecule has limited peptide binding compared to conventional MHC molecules such as K or D, which correlates with polymorphisms associated with "elite control" of HIV in humans.

View Article and Find Full Text PDF

Thymocytes bearing αβ T cell receptors (TCRαβ) with high affinity for self-peptide-MHC complexes undergo negative selection or are diverted to alternate T cell lineages, a process termed agonist selection. Among thymocytes bearing TCRs restricted to MHC class I, agonist selection can lead to the development of precursors that can home to the gut and give rise to CD8αα-expressing intraepithelial lymphocytes (CD8αα IELs). The factors that influence the choice between negative selection versus CD8αα IEL development remain largely unknown.

View Article and Find Full Text PDF

Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired.

View Article and Find Full Text PDF

The thymic production of regulatory T cells (Treg cells) requires interleukin 2 (IL-2) and agonist T cell antigen receptor (TCR) ligands and is controlled by competition for a limited developmental niche, but the thymic sources of IL-2 and the factors that limit access to the niche are poorly understood. Here we found that IL-2 produced by antigen-bearing dendritic cells (DCs) had a key role in Treg cell development and that existing Treg cells limited new development of Treg cells by competing for IL-2. Our data suggest that antigen-presenting cells (APCs) that can provide both IL-2 and a TCR ligand constitute the thymic niche and that competition by existing Treg cells for a limited supply of IL-2 provides negative feedback for new production of Treg cells.

View Article and Find Full Text PDF

The classic anti-viral cytokine interferon (IFN)-β can be induced during parasitic infection, but relatively little is know about the cell types and signaling pathways involved. Here we show that inflammatory monocytes (IMs), but not neutrophils, produce IFN-β in response to T. gondii infection.

View Article and Find Full Text PDF

CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma, but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen, ROP5, that elicits a CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense-granule antigen GRA6 is constitutively secreted into the parasitophorous vacuole.

View Article and Find Full Text PDF

Toxoplasma gondii infection occurs through the oral route, but we lack important information about how the parasite interacts with the host immune system in the intestine. We used two-photon laser-scanning microscopy in conjunction with a mouse model of oral T. gondii infection to address this issue.

View Article and Find Full Text PDF

Little is known about the dynamics of the interactions between thymocytes and other cell types, as well as the spatiotemporal distribution of thymocytes during positive selection in the microenvironment of the cortex. We used two-photon laser scanning microscopy of the mouse thymus to visualize thymocytes and dendritic cells (DCs) and to characterize their interactions in the cortex. We show that thymocytes make frequent contacts with DCs in the thymic cortex and that these associations increase when thymocytes express T cell receptors that mediate positive selection.

View Article and Find Full Text PDF

Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern.

View Article and Find Full Text PDF

During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7.

View Article and Find Full Text PDF

Both the Notch and TCR signaling pathways play an important role in T cell development, but the links between these signaling pathways are largely unexplored. The adapter protein Numb is a well-characterized inhibitor of Notch and also contains a phosphotyrosine binding domain, suggesting that Numb could provide a link between these pathways. We explored this possibility by investigating the physical interactions among Notch, Numb, and the TCR signaling apparatus and by examining the consequences of a Numb mutation on T cell development.

View Article and Find Full Text PDF