Publications by authors named "Shiang-Chi Lin"

Atopic dermatitis is featured with impaired skin barrier. The stratum corneum and the intercellular tight junctions constitute the permeability barrier, which is essential to protect water loss in the host and prevent pathogen entry. The epidermal barrier is constantly renewed by differentiating keratinocytes through cornification, during which autophagy contributes to elimination of organelles and nucleus.

View Article and Find Full Text PDF

Microfluidic pump is an essential component in lab-on-chip applications. It is of importance to develop an active microfluidic pump with low-power and low-cost characteristics for portable and miniaturized diagnostic systems. Taking advantages of CMOS technologies, in this work, we report a low-power microfluidic pump based on travelling-wave electroosmosis (TWEO).

View Article and Find Full Text PDF

Physiological communication between neurons is dependent on the exchange of neurotransmitters at the synapses. Although this chemical signal transmission targets specific receptors and allows for subtle adaptation of the action potential, in vitro neuroscience typically relies on electrical currents and potentials to stimulate neurons. The electric stimulus is unspecific and the confinement of the stimuli within the media is technically difficult to control and introduces large artifacts in electric recordings of the activity.

View Article and Find Full Text PDF

Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting.

View Article and Find Full Text PDF

Particle separation is a crucial step in sample preparation processes. The preparation of low volume samples is especially important for clinical diagnosis and chemical analysis. The advantages of microfluidic techniques have lead them to become potential candidates for particle separation.

View Article and Find Full Text PDF

Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades.

View Article and Find Full Text PDF

The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs).

View Article and Find Full Text PDF

Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated.

View Article and Find Full Text PDF