Publications by authors named "Shian-Ling Ding"

Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS).

View Article and Find Full Text PDF

Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping.

View Article and Find Full Text PDF

Background: To investigate markers for predicting breast cancer progression, we performed a candidate gene-based study that assessed expression change of three genes, cyclin D1, β-catenin, and metastasis-associated protein-1 (MTA1), involving in aggressive phenotypes of cancerous cells, namely hyperproliferation, epithelial-mesenchymal transition, and global transcriptional regulation.

Methods: Specimens were from 150 enrolled female patients, with invasive ductal carcinoma, followed up for more than 10 years. mRNA expression of cyclin D1, β-catenin, and MTA1 in cancerous and noncancerous cells microdissected from the primary tumor site was determined by quantitative real-time PCR.

View Article and Find Full Text PDF

Tumor recurrence and metastasis result in an unfavorable prognosis for cancer patients. Recent studies have suggested that specific microRNAs (miRNAs) may play important roles in the development of cancer cells. However, prognostic markers and the outcome prediction of the miRNA signature in breast cancer patients have not been comprehensively assessed.

View Article and Find Full Text PDF

Introduction: Estrogen forms a complex with the estrogen receptor (ER) that binds to estrogen response elements (EREs) in the promoter region of estrogen-responsive genes, regulates their transcription, and consequently mediates physiological or tumorigenic effects. Thus, sequence variants in EREs have the potential to affect the estrogen-ER-ERE interaction. In this study, we examined the hypothesis that genetic variations of EREs are associated with breast cancer development.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to explore the link between genetic variations in the ESR1 gene, which encodes the estrogen receptor alpha, and breast cancer risk, clinical characteristics, and disease progression.
  • Conducted with 940 breast cancer patients and 1,547 healthy controls, the research focuses on 15 specific single-nucleotide polymorphisms (SNPs) in the ESR1 gene, analyzing their frequency and effects on cancer susceptibility and progression.
  • Findings indicate that certain SNPs in intron 1 of the ESR1 gene are significantly associated with breast cancer risk and clinical outcomes, showing variations in effects between different populations, particularly between Chinese and Western women.
View Article and Find Full Text PDF

Background: Endogenous estrogen is suggested to initiate cell proliferation and cause oxidative DNA damage during breast tumorigenesis. Cells eliminate DNA damage by means of repair enzymes. Genotypic variants of DNA damage repair genes, participating in base excision repair (BER) and nucleotide excision repair (NER) pathways, may act as modifiers that affect the association between estrogen exposure and breast cancer.

View Article and Find Full Text PDF

Tumor levels of the cell cycle regulators cyclin E and p27 correlate strongly with survival in breast cancer patients and are specifically regulated by the ubiquitin ligases hCDC4 and SKP2. This study was to explore whether genetic susceptibility to breast cancer is associated with polymorphism of these genes and whether gene-gene and gene-risk factor [i.e.

View Article and Find Full Text PDF

The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging.

View Article and Find Full Text PDF

The role of the familial breast cancer susceptibility genes, BRCA1 and BRCA2, in the homologous recombination (HR) pathway for DNA double-strand break (DSB) repair suggests that the mechanisms involved in HR and DNA DSB repair are of etiological importance during breast tumorigenesis. Bloom (BLM) helicase directly interacts with RAD51 recombinase, which is involved in regulating HR, and it is thus of particular interest to examine whether this interaction is associated with breast cancer susceptibility. This single-nucleotide polymorphism (SNP)-based case-control study was performed to examine this hypothesis using specimens from 933 patients with breast cancer and 1539 healthy controls.

View Article and Find Full Text PDF

The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is unclear.

View Article and Find Full Text PDF

A tumorigenic role of the non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks (DSBs) has been suggested by our finding of a significant association between increased breast cancer risk and a cooperative effect of single-nucleotide polymorphisms in NHEJ genes. To confirm this finding, this case-control study detected both in vivo and in vitro DNA end-joining (EJ) capacities in Epstein-Barr virus-immortalized peripheral blood mononuclear cells (PBMCs) of 112 breast cancer patients and 108 healthy controls to identify individual differences in EJ capacity to repair DSB as a risk factor predisposing women to breast cancer. PBMCs from breast cancer patients consistently showed lower values of in vivo and in vitro EJ capacities than those from healthy women (P < 0.

View Article and Find Full Text PDF

The high risk of developing cancer seen in human genetic diseases that resemble accelerated aging provides support for a tumorigenic contribution of the mechanisms and genes responsible for regulating life span and aging. We therefore speculated that the WRN gene (encoding RECQL2, a DNA helicase), the germline mutation of which causes the progeroid disorder Werner syndrome, may be associated with breast tumorigenesis. This hypothesis was tested in this case-control study of 935 primary breast cancer patients and 1,545 healthy controls by examining single-nucleotide polymorphisms (SNPs) in WRN.

View Article and Find Full Text PDF

Estrogen causes breast cancer by triggering proliferation via an estrogen receptor (ER)-mediated mechanism. However, paradoxically, ER alpha, one of the two known ER subtypes, and the proliferation marker, Ki67, are not usually expressed in the same breast tumor. To explore whether ER alpha-positive tumors and proliferating (Ki67-positive) tumors have different tumorigenic characteristics, we performed an immunohistochemical study on 74 early-onset infiltrating ductal carcinomas of the breast.

View Article and Find Full Text PDF