Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context.
View Article and Find Full Text PDFInsulin stimulates glucose uptake through the translocation of the glucose transporter GLUT4 to the plasma membrane. The exocyst complex tethers GLUT4-containing vesicles to the plasma membrane, a process that requires the binding of the G protein (heterotrimeric guanine nucleotide-binding protein) RalA to the exocyst complex. We report that upon activation of RalA, the protein kinase TBK1 phosphorylated the exocyst subunit Exo84.
View Article and Find Full Text PDFObesity produces a chronic inflammatory state involving the NFκB pathway, resulting in persistent elevation of the noncanonical IκB kinases IKKε and TBK1. In this study, we report that these kinases attenuate β-adrenergic signaling in white adipose tissue. Treatment of 3T3-L1 adipocytes with specific inhibitors of these kinases restored β-adrenergic signaling and lipolysis attenuated by TNFα and Poly (I:C).
View Article and Find Full Text PDFEmerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases.
View Article and Find Full Text PDFObesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose tissue macrophages. IKKepsilon knockout mice are protected from high-fat diet-induced obesity, chronic inflammation in liver and fat, hepatic steatosis, and whole-body insulin resistance.
View Article and Find Full Text PDFPhosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover.
View Article and Find Full Text PDFThe transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) is required during adipogenesis for development of insulin-stimulated glucose uptake. Modes for regulating this function of C/EBPalpha have yet to be determined. Phosphorylation of C/EBPalpha on Ser-21 has been implicated in the regulation of granulopoiesis and hepatic gene expression.
View Article and Find Full Text PDFFSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism.
View Article and Find Full Text PDFInsulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes.
View Article and Find Full Text PDFCbl-associated protein (Cap) is a member of a phosphatidylinositol 3-kinase-independent pathway for insulin-stimulated translocation of the glucose transporter GLUT4. Despite this positive role of Cap in glucose uptake, here we show that deletion of the gene encoding Cap (official gene name: Sorbs1) protects against high-fat diet (HFD)-induced insulin resistance in mice while also having an opposite, insulin-sensitizing effect, accompanied by reduced tissue markers of inflammation. Given the emerging role of chronic inflammation in insulin resistance and the macrophage in initiating this inflammatory process, we considered that Sorbs1 deletion from macrophages may have resulted in the observed protection from HFD-induced insulin resistance.
View Article and Find Full Text PDFThe Wnt family of secreted signaling molecules has profound effects on diverse developmental processes, including the fate of mesenchymal progenitors. While activation of Wnt signaling blocks adipogenesis, inhibition of endogenous Wnt/beta-catenin signaling by Wnt10b promotes spontaneous preadipocyte differentiation. Transgenic mice with expression of Wnt10b from the FABP4 promoter (FABP4-Wnt10b) have less adipose tissue when maintained on a normal chow diet and are resistant to diet-induced obesity.
View Article and Find Full Text PDFInsulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6.
View Article and Find Full Text PDFPrevious studies have suggested that activation of the Rho family member GTPase TC10 is necessary but not sufficient for the stimulation of glucose transport by insulin. We show here that endogenous TC10alpha is rapidly activated in response to insulin in 3T3L1 adipocytes in a phosphatidylinositol 3-kinase-independent manner, whereas platelet-derived growth factor was without effect. Knockdown of TC10alpha but not TC10beta by RNA interference inhibited insulin-stimulated glucose uptake as well as the translocation of the insulin-sensitive glucose transporter GLUT4 from intracellular sites to the plasma membrane.
View Article and Find Full Text PDFLipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8.
View Article and Find Full Text PDFInsulin stimulates glucose uptake in insulin-responsive tissues by means of the translocation of the glucose transporter GLUT4 from intracellular sites to the plasma membrane. Two pathways are required, one involving activation of a phosphatidylinositol 3-kinase (PI 3-kinase) and downstream protein kinases, and one involving activation of the Rho-family GTPase TC10. TC10 activation by insulin is catalyzed by the exchange factor C3G, which is translocated to lipid rafts along with its binding partner CrkII as a consequence of Cbl tyrosine phosphorylation by the insulin receptor.
View Article and Find Full Text PDFGaps remain in our understanding of the precise molecular mechanisms by which insulin regulates glucose uptake in fat and muscle cells. Recent evidence suggests that insulin action involves multiple pathways, each compartmentalized in discrete domains. Upon activation, the receptor catalyzes the tyrosine phosphorylation of a number of substrates.
View Article and Find Full Text PDFLiver X receptors (LXR) alpha and beta are nuclear oxysterol receptors with established roles in cholesterol, lipid, and carbohydrate metabolism. Although LXRs have been extensively studied in liver and macrophages, the importance for development and metabolism of other tissues and cell types is not as well characterized. We demonstrate here that although LXRalpha and LXRbeta are not required for adipocyte development per se, LXRbeta is required for the increase in adipocyte size that normally occurs with aging and diet-induced obesity.
View Article and Find Full Text PDFWnt is a family of secreted signaling proteins that regulate diverse developmental processes. Activation of canonical Wnt signaling by Wnt10b inhibits differentiation of preadipocytes in vitro. To determine whether Wnt signaling blocks adipogenesis in vivo, we created transgenic mice in which Wnt10b is expressed from the FABP4 promoter.
View Article and Find Full Text PDFThe incidence of obesity has reached epidemic proportions within industrial societies; however, research on human obesity has been hampered by our inability to control genetic and environmental factors. The control of energy homeostasis appears to be conserved among species. Recent creative research in Caenorhabditis elegans, including the application of a genome-wide RNA interference analysis, has provided insight into the genes involved in energy balance.
View Article and Find Full Text PDFInsulin stimulates glucose uptake in fat and muscle cells via the translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the cell surface. The signaling pathways linking the insulin receptor to GLUT4 translocation in adipocytes involve activation of the Rho family GTPases TC10alpha and beta. We report here the identification of TCGAP, a potential effector for Rho family GTPases.
View Article and Find Full Text PDFInsulin stimulates glucose transport by promoting exocytosis of the glucose transporter Glut4 (refs 1, 2). The dynamic processes involved in the trafficking of Glut4-containing vesicles, and in their targeting, docking and fusion at the plasma membrane, as well as the signalling processes that govern these events, are not well understood. We recently described tyrosine-phosphorylation events restricted to subdomains of the plasma membrane that result in activation of the G protein TC10 (refs 3, 4).
View Article and Find Full Text PDFTo examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT.
View Article and Find Full Text PDFInsulin stimulates glucose transport via phosphatidylinositol 3-kinase-dependent and -independent pathways. The phosphatidylinositol 3-kinase-independent pathway involves activation of the G protein TC10. A cDNA encoding the mouse homolog of TC10 was cloned, and its gene was mapped at the distal end of chromosome 17.
View Article and Find Full Text PDF