Publications by authors named "ShiPeng Chen"

Article Synopsis
  • BRD7 is a low-expressed tumor suppressor in nasopharyngeal carcinoma (NPC) that plays a crucial role in increasing the radiosensitivity of NPC cells.
  • Overexpression of BRD7 leads to more DNA double-strand breaks and enhances the effectiveness of radiation therapy on NPC cells.
  • The study suggests that targeting the BRD7/METTL3 axis could be a new treatment approach to improve outcomes for NPC patients facing radioresistance.
View Article and Find Full Text PDF

Gold coating is prepared by pulse electroplating on zincated aluminum alloys with electroless plated Ni-P and electroplated Ni interlayers under different zincate pretreatment conditions. The quantitative characterization of the bonding strength of coatings on aluminum alloy is conducted by bonding the coating to the face of a loading fixture with E-7 high-strength two-component epoxy adhesive in a tension normal to the bonding interface. The microstructures of coatings on aluminum alloy are investigated by means of scanning electron microscopy, energy disperse spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Purpose: Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated.

Methods: The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting.

View Article and Find Full Text PDF

It is inevitable to encounter through different formations in the drilling process for deep exploration, and the penetration resistance coefficient (PRC) is an uncertain parameter related to lithology. In this article, a parameter-estimation-based gain-scheduling controller is developed to eliminate undesired system performance deterioration due to the uncertain parameter. First, a drill-string axial finite element model with the uncertain PRC is established, and a control-oriented low-order model is derived via mode selection.

View Article and Find Full Text PDF

Understanding the interaction between metal ions as catalytic centers and supramolecular scaffolds as chiral substrates plays an important role in developing chiral supramolecular catalysts with high enantioselectivity. Herein, we found that compared with l-norleucine chiral amphiphile (l-NorC), l-methionine chiral amphiphile (l-MetC) with the only heteroatom of S site difference in the hydrophilic group can form a similar supramolecular chiral nanoribbon (NR) with the bilayer structure through the self-assembly approach; yet, the interaction between the Cu(II) ion catalytic centers and supramolecular scaffolds is reinforced, favoring the chirality transfer and therefore enhancing their catalytic enantioselectivity of Diels-Alder reaction from 23% [l-NorC-NR-Cu(II)] to 78% [l-MetC-NR-Cu(II)]. Our work demonstrates a new strategy from the perspective of strengthening the metal ion-supramolecular scaffold interaction for the preparation of chiral supramolecular catalysts with good catalytic enantioselectivity.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels.

View Article and Find Full Text PDF

The construction of the preferred orientation structure by stretching is an efficient strategy to fabricate high-performance cellulose film and it is still an open issue whether crystalline structure or amorphous molecular chain is the key factor in determining the enhanced mechanical performance. Herein, uniaxial stretching with constant width followed by drying in a stretching state was carried out to cellulose hydrogels with physical and chemical double cross-linking networks, achieving high-performance regenerated cellulose films (RCFs) with an impressive tensile strength of 154.5 MPa and an elastic modulus of 5.

View Article and Find Full Text PDF

Purpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition.

Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and and experiments were performed to confirm the findings.

View Article and Find Full Text PDF

Aging is intricately linked to immune system dysfunction. Recent studies have highlighted the biological function of microRNA-7 (miR-7) as a novel regulator of immune cell function and related diseases. However, the potential role of miR-7 in aging remains unexplored.

View Article and Find Full Text PDF

MicroRNA-7 (miRNA-7, miR-7) is a unique class of tumor suppressors, plays an important role in various physiological and pathological processes including human non-small cell lung cancer (NSCLC). In previous works, we revealed that miR-7 could regulate the growth and metastasis of human NSCLC cells. However, the mechanism of dysregulated miR-7 expression in NSCLC remains to be further elucidated.

View Article and Find Full Text PDF

Three-dimensional interpenetrating and hierarchically porous carbon material is an efficient catalyst support in water remediation and it is still a daunting challenge to establish the relationship between hierarchically porous structure and catalytic degradation performance. Herein, a highly porous silica (SiO)/cellulose-based carbon aerogel with iron-based catalyst (FeO) was fabricated by in-situ synthesis, freeze-drying and pyrolysis, where the addition of SiO induced the hierarchically porous morphology and three-dimensional interpenetrating sheet-like network with nitrogen doping. The destruction of cellulose crystalline structure by SiO and the iron-catalyzed breakdown of glycosidic bonds synergistically facilitated the formation of electron-rich graphite-like carbon skeleton.

View Article and Find Full Text PDF

5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors.

View Article and Find Full Text PDF
Article Synopsis
  • * The study utilized multiple datasets and various experimental methods to examine how APOA1 influences the HCC tumor microenvironment (TME), finding that high levels of APOA1 corresponded with better prognosis and specific biological functions related to cholesterol efflux.
  • * Findings suggest that APOA1 has promising potential as a clinical target for HCC, showing anti-tumor effects and favorable interactions with immune cells, which could aid in future assessments and treatments for the disease.
View Article and Find Full Text PDF

BRD7 was identified as a tumor suppressor in nasopharyngeal carcinoma (NPC). Circular RNAs (CircRNAs) are involved in the occurrence and development of NPC as oncogenes or tumor suppressors. However, the function and mechanism of the circular RNA forms derived from BRD7 in NPC are not well understood.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small regulatory RNAs that participate in various biological processes by silencing target genes. In Arabidopsis, microRNA163 (miR163) was found to be involved in seed germination, root development, and biotic resistance. However, the regulatory roles of miR163 remain unclear.

View Article and Find Full Text PDF

Sweetpotato (Ipomoea batatas L.) is regarded as amongst the world's most important crops for food, vegetable, forage, and raw material for starch and alcohol production. Since pest attack and disease infection are the main limiting aspects frequently causing the yield loss and quality degradation of sweetpotato, it is a great demand to develop the effective defense strategies for maintaining productivity.

View Article and Find Full Text PDF

Background: NOP2/Sun RNA methyltransferase 2 (NSUN2), an important methyltransferase of m5C, has been poorly studied in cancers, and the relationship between NSUN2 and immunity remains largely unclear. Therefore, the purpose of this study was to explore the expression and prognostic value of NSUN2 and the role of NSUN2 in immunity in cancers.

Methods: The TIMER, CPTAC and other databases were used to analyze the expression of NSUN2, its correlation with clinical stage and its prognostic value across cancers.

View Article and Find Full Text PDF

Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo.

View Article and Find Full Text PDF

Maillard reaction in pharmaceutical preparations refers to a complex chemical reaction existing between reducing excipients and amino-containing drugs in preparations, which can cause a series of quality problems in preparations. Maillard reaction belongs to chemical incompatibility in preparations, and measures should be taken to reduce or avoid it. In this study, the effect of cyclodextrins (commonly used pharmaceutical excipients) on the Maillard reaction and its mechanism in the lysine hydrochloride-lactose solid preparation model were explored for the first time.

View Article and Find Full Text PDF

Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3.

View Article and Find Full Text PDF

Background: Hepatic immune tolerance might contribute to the development of therapeutic resistance to immunotherapy. However, addressing this issue is challenging since the efficacy of immunotherapy in the context of liver metastasis (LM) remains poorly studied. Here, we aimed to establish an LM common immune feature (LMCIF) score to quantify the characteristics of LM immunotolerance across cancer types for assisting clinical disease management.

View Article and Find Full Text PDF

Mitophagy is a selective autophagy targeting damaged and potential cytotoxic mitochondria, which can effectively prevent excessive cytotoxic production from damaged mitochondria and alleviate the inflammatory response. However, the potential role of mitophagy in sepsis remains poorly explored. Here, we studied the role of mitophagy in sepsis and its immune heterogeneity.

View Article and Find Full Text PDF

Coupling the photoproduction of solar fuel and value-added chemicals is highly attractive, as it maximizes the utilization of incident sunlight and the economic value of photocatalytic reactions. Constructing intimate semiconductor heterojunction for these reactions is highly desirable due to accelerated charge separation at the interfacial contact, but is challenged by material synthesis. Here, an active heterostructure bearing intimate interface, consisting of discrete Co S nanoparticles anchored on cobalt doped ZnIn S using a facile in situ one-step strategy, can drive photocatalytic co-production of H O and benzaldehyde from a two-phase water/benzyl alcohol system with spatial product separation is reported.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a powerful industrial oxidant and potential carbon-neutral liquid energy carrier. Sunlight-driven synthesis of HO from the most earth-abundant O and seawater is highly desirable. However, the solar-to-chemical efficiency of HO synthesis in particulate photocatalysis systems is low.

View Article and Find Full Text PDF