For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin.
View Article and Find Full Text PDFTo elucidate the relationships between molecular recognition and catalytic ability, we chose three assay systems using three different thiol substrates, glutathione (GSH), 3-carboxyl-4-nitrobenzenethiol (CNBSH), and 4-nitrobenzenethiol (NBSH), to investigate the glutathione peroxidase (GPx) activities of 2,2'-ditellurobis(2-deoxy-beta-cyclodextrin) (2-TeCD) in the presence of a variety of structurally distinct hydroperoxides (ROOH), H2O2, tert-butyl peroxide (tBuOOH), and cumene peroxide (CuOOH), as the oxidative reagent. A comparative study of the three assay systems revealed that the cyclodextrin moiety of the GPx mimic 2-TeCD endows the molecule with selectivity for ROOH and thiol substrates, and hydrophobic interactions are the most important driving forces in 2-TeCD complexation. Furthermore, in the novel NBSH assay system, 2-TeCD can catalyze the reduction of ROOH about 3.
View Article and Find Full Text PDF