A new highly selective fluorescent chemosensor for formaldehyde (FA) has been synthesized based on boron dipyrromethene as fluorophore and o-phenylenediamine (OPDA) as reaction group. When FA is added, the fluorescence emission band of the chemosensor red shift (from 525 nm to 548 nm) accompanied by an increase in intensity with strong green fluorescence was observed. This chemosensor also exhibited the lowest detection limit (0.
View Article and Find Full Text PDFNOP53 is a tumor suppressor protein located in the nucleolus and is translocated to the cytoplasm during infection by vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1), as shown in our previous study. Cytoplasmic NOP53 interacts with the retinoic acid-inducible gene I (RIG-I) to remove its K63-linked ubiquitination, leading to attenuation of type I interferon IFN-β. In the present study, we found no obvious translocation of NOP53 in infection by a mutant virus lacking ICP4 (HSV-1/d120, replication inadequate).
View Article and Find Full Text PDFTo ensure efficient virus replication, herpes simplex virus type 1 (HSV-1) encodes several viral proteins to counter host defense response upon infection. Among these proteins, the multifunctional viral protein γ34.5 crucially interferes with or disrupts several antiviral pathways at multiple levels.
View Article and Find Full Text PDFTwo fluorescent, m-nitrophenol-substituted difluoroboron dipyrromethene dyes have been designed by nucleophilic substitution reaction of 3,5-dichloro-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY). Nonsymmetric and symmetric probes, that is. BODIPY 1 (with one nitrophenol group at the position 3) and BODIPY 2 (with two nitrophenol groups at the positions 3 and 5) were applied to ratiometric fluorescent glutathione detection.
View Article and Find Full Text PDFViral infection induces translocation of the nucleolar protein GLTSCR2 from the nucleus to the cytoplasm, resulting in attenuation of the type I interferon IFN-β. Addressing the role of GLTSCR2 in viral replication, we detect that knocking down GLTSCR2 by shRNAs results in significant suppression of viral replication in mammalian and chicken cells. Injection of chicken embryo with the GLTSCR2-specific shRNA-1370 simultaneously or 24 h prior to infection with Newcastle disease virus (NDV) substantially reduces viral replication in chicken embryo fibroblasts.
View Article and Find Full Text PDFHerein a phenylselenium-substituted BODIPY (1) fluorescent turn-off sensor was developed for the purpose to achieve excellent selectivity and sensitivity for HS detection based on the substitution reaction of the phenylselenide group at the 3-position with HS. The excess addition of hydrogen sulfide promoted further substitution of the phenylselenide group at the 5-position of the probe and was accompanied by a further decrease in fluorescence emission intensity. Sensor 1 demonstrated remarkable performance with 49-fold red color fluorescence intensity decrease at longer excitation wavelength, a low detection limit (0.
View Article and Find Full Text PDFGlioma tumor suppressor candidate region gene 2 protein (GLTSCR2) is a nucleolar protein. In the investigation of the role of GLTSCR2 that played in the cellular innate immune response to viral infection, we found GLTSCR2 supported viral replication of rhabdovirus, paramyxovirus, and coronavirus in cells. Viral infection induced translocation of GLTSCR2 from nucleus to cytoplasm that enabled GLTSCR2 to attenuate type I interferon IFN-β and support viral replication.
View Article and Find Full Text PDFVirus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran.
View Article and Find Full Text PDFStable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR.
View Article and Find Full Text PDFViroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV) has not yet been described.
View Article and Find Full Text PDFTo explore the expression potential of heterogeneous genes using the backbone of infectious bronchitis virus (IBV) Beaudette strain, the ectodomain region of the Spike gene (1,302 bp) of IBV H120 strain was amplified by RT-PCR and replaced into the corresponding location of the IBV Beaudette strain full-length cDNA. This recombinant was designated as BeauR-H120(S1). BeauR-H120(S1) was directly used as the DNA template for the transcription of viral genomic RNA in vitro.
View Article and Find Full Text PDFCanine parvovirus (CPV) can cause acute hemorrhagic diarrhea and fatal myocarditis in young dogs. Currently, most studies have focused on the evolution of the VP2 gene, whereas the full-length genome of CPV has been rarely reported. In this study, the whole genomes of CPV-LZ1 and CPV-LZ2 strains prevalent in Northwest China were determined and analyzed in comparison with those of the reference CPVs.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV.
View Article and Find Full Text PDFCanine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety.
View Article and Find Full Text PDF