Abnormalities in intracellular calcium release and reuptake are responsible for decreased contractility in heart failure (HF). We have previously shown that cardiac ryanodine receptors (RyRs) are protein kinase A-hyperphosphorylated and depleted of the regulatory subunit calstabin-2 in HF. Moreover, similar alterations in skeletal muscle RyR have been linked to increased fatigability in HF.
View Article and Find Full Text PDFBackground: Familial polymorphic ventricular tachycardia (FPVT) is characterized by exercise-induced arrhythmias and sudden cardiac death due to missense mutations in the cardiac ryanodine receptor (RyR2), an intracellular Ca2+ release channel required for excitation-contraction coupling in the heart.
Methods And Results: Three RyR2 missense mutations, P2328S, Q4201R, and V4653F, which occur in Finnish families, result in similar mortality rates of approximately 33% by age 35 years and a threshold heart rate of 130 bpm, above which exercise induces ventricular arrhythmias. Exercise activates the sympathetic nervous system, increasing cardiac performance as part of the fight-or-flight stress response.