Raman scattering is sensitive to local temperature and thus offers a convenient tool for non-contact and non-destructive optical thermometry at the nanoscale. In turn, all-dielectric nanostructures, such as silicon particles, exhibit strongly enhanced photothermal heating due to Mie resonances, which leads to the strong modulation of elastic Rayleigh scattering intensity through subsequent thermo-optical effects. However, the influence of the complex photo-thermo-optical effect on inelastic Raman scattering has yet to be explored for resonant dielectric nanostructures.
View Article and Find Full Text PDFTwo-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed and image quality, grappling with a low signal-to-noise ratio (SNR) due to limited signal photon flux. Here, a contrast-enhanced video-rate volumetric system, integrating a tunable acoustic gradient (TAG) lens-based high-speed microscopy with a TAG-SPARK denoising algorithm is demonstrated.
View Article and Find Full Text PDFLaser Photon Rev
December 2023
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.
View Article and Find Full Text PDFTissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency.
View Article and Find Full Text PDFBiomed Opt Express
February 2024
Saturated excitation microscopy, which collects nonlinear fluorescence signals generated by saturation, has been proposed to improve three-dimensional spatial resolution. Differential saturated excitation (dSAX) microscopy can further improve the detection efficiency of a nonlinear fluorescence signal. By comparing signals obtained at different saturation levels, high spatial resolution can be achieved in a simple and efficient manner.
View Article and Find Full Text PDFWe demonstrated optical bistability in an amorphous silicon Mie resonator with a size of ∼100 nm and -factor as low as ∼4 by utilizing photothermal and thermo-optical effects. We not only experimentally confirmed the steep intensity transition and the hysteresis in the scattering response from silicon nanocuboids but also established a physical model to numerically explain the underlying mechanism based on temperature-dependent competition between photothermal heating and heat dissipation. The transition between the bistable states offered particularly steep superlinearity of scattering intensity, reaching an effective nonlinearity order of ∼100th power over excitation intensity, leading to the potential of advanced optical switching devices and super-resolution microscopy.
View Article and Find Full Text PDFThe canonical studies on Mie scattering unravel strong electric/magnetic optical responses in nanostructures, laying foundation for emerging meta-photonic applications. Conventionally, the morphology-sensitive resonances hinge on the normalized frequency, i.e.
View Article and Find Full Text PDFStimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption.
View Article and Find Full Text PDFInterferometric scattering (iSCAT) microscopy is a highly sensitive imaging technique that uses common-path interferometry to detect the linear scattering fields associated with samples. However, when measuring a complex sample, such as a biological cell, the superposition of the scattering signals from various sources, particularly those along the optical axis of the microscope objective, considerably complicates the data interpretation. Herein, we demonstrate high-speed, wide-field iSCAT microscopy in conjunction with confocal optical sectioning.
View Article and Find Full Text PDFIn this paper, we theoretically and experimentally demonstrated photothermal nonlinearities of both forward and backward scattering intensities from quasi-perfect absorbing silicon-based metasurface with only /7 thickness. The metasurface is efficiently heated up by photothermal effect under laser irradiation, which in turn modulates the scattering spectra via thermo-optical effect. Under a few milliwatt continuous-wave excitation at the resonance wavelength of the metasurface, backward scattering cross-section doubles, and forward scattering cross-section reduces to half.
View Article and Find Full Text PDFStimulated Raman scattering (SRS) has attracted increasing attention in bio-imaging because of the ability toward background-free molecular-specific acquisitions without fluorescence labeling. Nevertheless, the corresponding sensitivity and specificity remain far behind those of fluorescence techniques. Here, we demonstrate SRS spectro-microscopy driven by a multiple-plate continuum (MPC), whose octave-spanning bandwidth (600-1300 nm) and high spectral energy density (∼1 nJ/cm) enable spectroscopic interrogation across the entire Raman active region (0-4000 cm), SRS imaging of a Drosophila brain, and electronic pre-resonance (EPR) detection of a fluorescent dye.
View Article and Find Full Text PDFPlasmonic structural color, in which vivid colors are generated via resonant nanostructures made of common plasmonic materials, such as noble metals have fueled worldwide interest in backlight-free displays. However, plasmonic colors that were withstanding ultrahigh temperatures without damage remain an unmet challenge due to the low melting point of noble metals. Here, we report the refractory hafnium nitride (HfN) plasmonic crystals that can generate full-visible color with a high image resolution of ∼63,500 dpi while withstanding a high temperature (900 °C).
View Article and Find Full Text PDFStudying neural connections and activities is fundamental to understanding brain functions. Given the cm-size brain and three-dimensional neural circuit dynamics, deep-tissue, high-speed volumetric imaging is highly desirable for brain study. With sub-micrometer spatial resolution, intrinsic optical sectioning, and deep-tissue penetration capability, two-photon microscopy (2PM) has found a niche in neuroscience.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
A unified framework for the analysis of fluorescence data taken by a two-photon imaging system is presented. As in the processing of blood-oxygen-level-dependent signals of functional magnetic resonance imaging, the acquired functional images have to be co-registered with a structural brain atlas before delineating the regions activated by a given stimulus. The voxels whose calcium traces are highly correlated with the predicted responses are demarcated without the need for subjective reasoning.
View Article and Find Full Text PDFSilicon photonics have attracted significant interest because of their potential in integrated photonics components and all-dielectric meta-optics elements. One major challenge is to achieve active control via strong photon-photon interactions, i.e.
View Article and Find Full Text PDFFeatured with a plethora of electric and magnetic Mie resonances, high index dielectric nanostructures offer a versatile platform to concentrate light-matter interactions at the nanoscale. By integrating unique features of far-field scattering control and near-field concentration from radiationless anapole states, here, we demonstrate a giant photothermal nonlinearity in single subwavelength-sized silicon nanodisks. The nanoscale energy concentration and consequent near-field enhancements mediated by the anapole mode yield a reversible nonlinear scattering with a large modulation depth and a broad dynamic range, unveiling a record-high nonlinear index change up to 0.
View Article and Find Full Text PDFBy coupling dye molecules with a graphene layer and localizing the molecules through quantification of fluorescence lifetime quenching, a novel imaging system offers unprecedented 1-nm resolution with angstrom precision in the axial dimension.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2019
Nonlinear nanoplasmonics is a largely unexplored research area that paves the way for many exciting applications, such as nanolasers, nanoantennas, and nanomodulators. In the field of nonlinear nanoplasmonics, it is highly desirable to characterize the nonlinearity of the optical absorption and scattering of single nanostructures. Currently, the common method to quantify optical nonlinearity is the -scan technique, which yields real and imaginary parts of the permittivity by moving a thin sample with a laser beam.
View Article and Find Full Text PDFAll-optical physiology (AOP) manipulates and reports neuronal activities with light, allowing for interrogation of neuronal functional connections with high spatiotemporal resolution. However, contemporary high-speed AOP platforms are limited to single-depth or discrete multi-plane recordings that are not suitable for studying functional connections among densely packed small neurons, such as neurons in Drosophila brains. Here, we constructed a 3D AOP platform by incorporating single-photon point stimulation and two-photon high-speed volumetric recordings with a tunable acoustic gradient-index (TAG) lens.
View Article and Find Full Text PDFWe developed a high-speed two-photon optical ribbon imaging system, which combines galvo-mirrors for an arbitrary curve scan on a lateral plane and a tunable acoustic gradient-index lens for a 100 kHz-1 MHz axial scan. The system provides micrometer/millisecond spatiotemporal resolutions, which enable continuous readout of functional dynamics from small and densely packed neurons in a living adult Drosophila brain. Compared to sparse sampling techniques, the ribbon imaging modality avoids motion artifacts.
View Article and Find Full Text PDFBiomed Opt Express
April 2019
is widely used in connectome studies due to its small brain size, sophisticated genetic tools, and the most complete single-neuron-based anatomical brain map. Surprisingly, even the brain thickness is only 200-μm, common Ti:sapphire-based two-photon excitation cannot penetrate, possibly due to light aberration/scattering of trachea. Here we quantitatively characterized scattering and light distortion of trachea-filled tissues, and found that trachea-induced light distortion dominates at long wavelength by comparing one-photon (488-nm), two-photon (920-nm), and three-photon (1300-nm) excitations.
View Article and Find Full Text PDFRecently, many super-resolution technologies have been demonstrated, significantly affecting biological studies by observation of cellular structures down to nanometer precision. However, current super-resolution techniques mostly rely on wavefront engineering or wide-field imaging of signal blinking or fluctuation, and thus imaging depths are limited due to tissue scattering or aberration. Here we present a technique that is capable of imaging through an intact Drosophila brain with 20-nm lateral resolution at ∼200 μm depth.
View Article and Find Full Text PDF