With increasingly used assisted reproductive technology (ART), the acquisition of high-quality oocytes and early embryos has become the focus of much attention. Studies in mice have found that the transition of chromatin conformation from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) is essential for oocyte maturation and early embryo development, and similar chromatin transition also exists in human oocytes. In this study, we collected human NSN and SN oocytes and investigated their transcriptome.
View Article and Find Full Text PDFAberrant sperm morphology hinders sperm motility and causes male subfertility. Spermatogenesis, a complex process in male germ cell development, necessitates precise regulation of numerous developmental genes. However, the regulatory pathways involved in this process remain partially understood.
View Article and Find Full Text PDFActa Pharmacol Sin
March 2024
Oligodendrocytes (OLs) are glial cells that ensheath neuronal axons and form myelin in the central nervous system (CNS). OLs are differentiated from oligodendrocyte precursor cells (OPCs) during development and myelin repair, which is often insufficient in the latter case in demyelinating diseases such as multiple sclerosis (MS). Many factors have been reported to regulate OPC-to-OL differentiation, including a number of G protein-coupled receptors (GPCRs).
View Article and Find Full Text PDFDynamic-related protein 1 (DRP1) is a key protein of mitochondrial fission. In this study, we found that inhibition of activity of DRP1 led to increased levels of cleavage embryo genes in mouse embryonic stem cells (mESCs), which might reflect a transient totipotency status derived from pluripotency. This result indicates that DRP1 inhibition in mESCs leads to a tendency to obtain a new expression profile similar to that of the 2C-like state.
View Article and Find Full Text PDFSignificantly decreased H3K4 methylation in oocytes from aged mice indicates the important roles of H3K4 methylation in female reproduction. However, how H3K4 methylation regulates oocyte development remains largely unexplored. In this study, it is demonstrated that oocyte-specific expression of dominant negative mutant H3.
View Article and Find Full Text PDFReprod Biol Endocrinol
July 2022
Background: Enhancer of zeste homologue 2 (EZH2), the core member of polycomb repressive complex 2 (PRC2), has multiple splicing modes and performs various physiological functions. However, function and mechanism of alternative splicing at Ezh2 exon 3 in reproduction are unknown.
Methods: We generated Ezh2 and Ezh2 mouse models with different point mutations at the Ezh2 exon 3 alternative splicing site, and each mutant mouse model expressed either the long or the short isoform of Ezh2.
The immature germinal vesicle (GV) oocytes proceed through metaphase I (MI) division, extrude the first polar body, and become mature metaphase II (MII) oocytes for fertilization which is followed by preimplantation and postimplantation development until birth. is the gene encoding S-adenosylmethionine carrier (SAMC), a member of the mitochondrial carrier family. Its major function is to catalyze the uptake of S-adenosylmethionine (SAM) from cytosol into mitochondria, which is the only known mitochondrial SAM transporter.
View Article and Find Full Text PDFN,N-dimethylformamide (DMF) is a widely-used solvent for the synthesis of synthetic fibers such as polyacrylonitrile fiber, and can also be used to make medicine. Although this organic solvent has multipurpose applications, its biological toxicity cannot be ignored and its impact on mammalian reproduction remains largely unexplored. Our study found that DMF exposure inhibited oocyte maturation and fertilization ability.
View Article and Find Full Text PDFDuring mammalian preimplantation development, stimulation of zygotic genome activation (ZGA) and transposable elements (TEs) shapes totipotency profiling. A rare mouse embryonic stem cells (mESCs) subpopulation is capable of transiently entering a state resembling 2-cell stage embryos, with subtypes of TEs expressed and ZGA genes transiently activated. In this study, we found that deletion of H2A.
View Article and Find Full Text PDFReprod Biol Endocrinol
June 2021
Background: After fertilization, the fusion of gametes results in the formation of totipotent zygote. During sperm-egg fusion, maternal factors participate in parental chromatin remodeling. H3.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has infected over 124 million people worldwide. In addition to the development of therapeutics and vaccines, the evaluation of the sequelae in recovered patients is also important. Recent studies have indicated that COVID-19 has the ability to infect intestinal tissues and to trigger alterations of the gut microbiota.
View Article and Find Full Text PDFUpon mammalian fertilization, zygotic genome activation (ZGA) and activation of transposable elements (TEs) occur in early embryos to establish totipotency and support embryogenesis. However, the molecular mechanisms controlling the expression of these genes in mammals remain poorly understood. The 2-cell-like population of mouse embryonic stem cells (mESCs) mimics cleavage-stage embryos with transient Dux activation.
View Article and Find Full Text PDFAn outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to an unprecedented worldwide health crisis. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2. Our objectives are to analysis the expression profile of ACE2 and TMPRSS2 in human spermatogenic cells, follicle cells, and preimplantation embryos, thereby providing mechanistic insights into viral entry and viral impact on reproduction.
View Article and Find Full Text PDFAfter fertilization, highly differentiated sperm and oocyte are reprogrammed to totipotent embryo, which subsequently cleavages and develops into an individual through spatial-temporal differentiation. Histone modifications play critical roles to coordinate with other reprogramming events in early stages of embryogenesis. However, most of studies focus on modifications at N-terminus of histones, those at nucleosome core were not well understood.
View Article and Find Full Text PDFRing1 and Yin Yang 1-Binding Protein (RYBP) is a member of non-canonical polycomb repressive complex 1 to mediate monoubiquitination of histone H2A at lysine 119. It plays an important role in development, but its role in reproduction remains illusive. In this study, we used Rybp conditional knockout mouse model to genetically ablate Rybp in male germ cells.
View Article and Find Full Text PDFSOX2 (sex determining region Y-box2) is one of the critical pluripotent factors that play a crucial role in the first lineage differentiation and maintenance of pluripotency in inner cell mass during early embryonic development. However, there are few researches about the regulation of the SOX2 promoter, especially in Sus scrofa. To analyzed the activity of SOX2 promoter in early porcine embryos, we determined the control system and established the microinjection system for assessing SOX2 promoter activity by analyzing the embryonic development and the expression of enhanced green fluorescence protein (EGFP) after micro-injected different EGFP plasmids at different times after activation of the oocytes.
View Article and Find Full Text PDF