Publications by authors named "Shi-Jin Feng"

Landfills in developing countries are typically characterized by high waste water content and elevated leachate levels. Despite the ongoing biodegradation of waste in the highly saturated regions of these landfills, which leads to gas accumulation and bubble formation, the associated gas pressure that poses a risk to landfill stability is often overlooked. This paper introduces a landfill gas (LFG) bubble generation model and a two-fluid model that considers bubble buoyancy and porous medium resistance.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) contamination at the groundwater may cause vapor intrusion and pose significant threats to human health. As a novel low-carbon mitigation technology, a horizontal permeable reactive barrier (HPRB) is proposed to remove the VOC vapor in the vadose zone and mitigate the vapor intrusion risk. To estimate the performance of HPRB in the contaminated site with a non-uniform source, a transient two-dimensional analytical model is developed in this study to simulate the VOC vapor migration and oxidation processes in the layered soil.

View Article and Find Full Text PDF

Aeration is an effective approach to sustainable landfilling but may lead to elevated temperatures within landfills, resulting in landfill fires or explosions. Therefore, aeration is usually combined with leachate recirculation to control the elevated temperatures within landfills. To predict landfill temperatures during aeration and recirculation, a local thermal non-equilibrium model is developed considering the heat generation of biodegradation, the heat removal due to evaporation and leachate-gas flow, and the effects of the capillary.

View Article and Find Full Text PDF

Traditional remediation technologies cannot well remediate the low permeability contaminated stratums due to the limitation in the transport capacity of solute. The technology that integrates the fracturing and/or slow-released oxidants can be a new alternative, and its remediation efficiency remains unknown. In this study, an explicit dissolution-diffusion solution for the oxidants in control release beads (CRBs) was developed to describe the time-varying release of oxidants.

View Article and Find Full Text PDF

Thermal enhanced soil vapour extraction (T-SVE) is a remedial technique involving gas, aqueous, solid and nonaqueous phases along with mass and heat transfer. Interphase mass transfer of contaminants and water evaporation/condensation will cause the redistribution of phase saturation, eventually affecting the performance of T-SVE. In this study, a multiphase, multicompositional and nonisothermal model was developed to simulate the T-SVE treatment of contaminated soil.

View Article and Find Full Text PDF

Low-permeability aquitards may serve as secondary sources of slow-releasing contaminants into the adjacent aquifer system, creating considerable obstacles to groundwater cleanup. Accurately capturing the exchange of contaminant mass between aquitards and aquifers can facilitate site management and remediation. Previous simulation studies were mainly limited to one-dimensional (1D) back diffusion from aquitards during the remediation of the source zone.

View Article and Find Full Text PDF

Rational utilization of soil resources and remediation of contaminated soils are imperative due to the rapidly growing demand for clean soils. Currently, many in-situ remediation technologies are less suitable at low-permeability sites due to the limitations of soil permeability. This work defines a low-permeability site as a site with hydraulic conductivity less than 10 cm/s, and summarizes the migration characteristics of representative contaminants at low-permeability sites, and discusses the principles and practical applications of different technologies suitable for the remediation of low-permeability sites, including electrokinetic remediation technology, polymer flushing technology, fracturing technology, and in-situ thermal remediation technology.

View Article and Find Full Text PDF

Contaminants stored in the low permeability sediments will continue to threaten the adjacent shallow groundwater system after the aquifer is remediated. Understanding the storage and discharge behavior of contaminants in the aquitards is essential for the efficient remediation of contaminated sites, but most of the previous analytical studies focused on nonreactive solutes in a single homogenous aquitard. This study presents novel analytical solutions for the forward and back diffusion of contaminants through multi-layer low permeability sediments considering abiotic and biotic environmental degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Aquitards contaminated with chlorinated solvents can slowly release these pollutants into nearby aquifers, complicating groundwater cleanup efforts.
  • A new analytical model was developed to understand how solvents back-diffuse through multilayer aquitards, taking into account factors like slow movement and degradation of solvents in these layers.
  • The study's findings suggest that solvent plumes can spread faster under certain conditions, and it challenges older models by introducing a "strong-effect zone" where degradation significantly influences the back-diffusion of solvents, aiding in better remediation planning.
View Article and Find Full Text PDF

Volatile organic compounds (VOCs) contamination may occur in subsurface soil due to various reasons and pose great threat to people. Petroleum hydrocarbon compound (PHC) is a typical kind of VOC, which can readily biodegrade in an aerobic environment. The biodegradation of vapor-phase PHC in the vadose zone consumes oxygen in the soil, which leads to the change in aerobic and anaerobic zones but has not been studied by the existing analytical models.

View Article and Find Full Text PDF

Fracturing technology that can enhance the delivery of amendments has attracted attention in the remediation of low-permeability contaminated sites. However, there are few works on the enhanced delivery of amendments based on multi-point injection in a fracture-matrix system. This study develops a two-dimensional analytical model for enhanced delivery of amendments in a finite-domain low-permeability matrix through multi-point injection in a natural, hydraulic or pneumatic fracture.

View Article and Find Full Text PDF

Although migration of subsurface volatile organic compounds (VOCs) from contaminant sources in unsaturated soil widely exists, the related analytical models are quite limited. A two-dimensional analytical solution is hence developed to simulate vapor diffusion from the subsurface contaminant source in the layered unsaturated zone. The contaminant source is simplified as a point source leaking at a constant rate.

View Article and Find Full Text PDF

Predicting the migration behavior of volatile organic compounds (VOCs) vapor is essential for the remediation of subsurface contamination such as soil vapor extraction. Previous analytical prediction models of VOCs migration are mostly limited to constant-concentration nonpoint sources in homogeneous soil. Thus, this study presents a novel analytical model for two-dimensional transport of VOCs vapor subjected to multiple time-dependent point sources involving transient diffusion, sorption and degradation in layered unsaturated soils.

View Article and Find Full Text PDF

Overtaking lung cancer,breast cancer is now the most commonly diagnosed cancer seriously threatening people's health and life. As the main effective component of Tripterygium wilfordii,triptolide( TP) has attracted increasing attention due to its multitarget and multi-pathway anti-tumor activity. Recent studies have revealed that breast cancer-sensitive TP enables the inactivation of breast cancer cells by inducing tumor cell apoptosis and autophagy,interfering in tumor cell metastasis,resisting drug resistance,arresting tumor cell cycle,and influencing tumor microenvironment.

View Article and Find Full Text PDF

A one-dimensional analytical model is proposed to analyze contaminant diffusion through a composite geomembrane cut-off wall (CGCW) composed of a geomembrane (GMB) and a bentonite cut-off wall (BCW). The model considers degradation process of contaminant and time-dependent inlet boundary condition which are common in engineering practices. Moreover, two limiting scenarios of the exit boundary condition (EBC) of CGCW for field conditions are taken into account, including the flushing and non-advective semi-infinite aquifer EBCs.

View Article and Find Full Text PDF

A new analytical model for organic contaminant transport through GMB/CCL (geomembrane and compacted clay liner) composite liner is developed, which can consider adsorption, diffusion and thermodiffusion processes and is applicable for typical bottom boundary conditions. The separation of variables method is adopted to derive the solution. The present model is first verified against experimental results and a numerical model.

View Article and Find Full Text PDF

Landfilling is the primary method used for municipal solid waste (MSW) disposal. To design, optimize, and manage landfills with a life span of several decades, a deeper understanding of long-term MSW behaviors is necessary and worthwhile. These behaviors should be modeled using approaches that account for coupled processes so as to capture the evolutionary mechanisms that are mainly dominated by biochemical, mechanical, hydraulic, and thermal processes, as well as the complex interactions among them.

View Article and Find Full Text PDF

To overcome the weaknesses of traditional landfills, a modified aerobic landfill concept with intermediate covers of coarse material between waste layers functioning as facilities of drainage and aeration has been proposed recently. In this study, a one-dimensional coupled model, including aerobic biodegradation, oxygen diffusion, and advection, is proposed to describe oxygen distribution in this new type of landfill. Homotopy analysis method and perturbation method are applied to solve this model at passive aeration and active aeration, respectively.

View Article and Find Full Text PDF

Horizontal spacing of horizontal extraction gas wells can be designed to achieve a 90% pumping rate of the total generated landfill gas (LFG) from given waste properties (viz: gas permeability, landfill gas generation and non-homogeneity with depth), cover characteristics and vacuum pressure. However, cover characteristics and vacuum pressure are also important design parameters and different combinations of them result in different distributions of gas pressure in the waste, some of which would induce problematic air intrusion while others might pose threat to cover stability. This paper uses the maximum gas pressure directly below cover to distinguish these combinations, and provides the first study of the effects of the above parameters on potential outcomes.

View Article and Find Full Text PDF

The aim of this paper was to study the prescription compatibility connotation in the treatment of primary dysmenorrhea(PD) and verify the mechanism as predicted by network pharmacology of Siwu Decoction(SWD). Mice PD model was constructed by using estradiol benzoate-oxytocin. PD mice were randomly divided into 8 groups, namely normal group, model group, positive group, complete formula group, Rehmanniae Radix Praeparata-free group, Paeoniae Radix Alba-free group, volatile oil-free group, Chuan-xiong Rhizoma and Angelicae Sinensis Radix-free group.

View Article and Find Full Text PDF

A two-dimensional analytical solution is developed to simulate vapor migration in layered soil laterally away from the edge of contaminant source and has advantages in considering the vapor concentration profile in a functional form near the source edge. The analytical solution is validated against existing analytical solution, numerical model and experimental results. It has also proved to be an alternative screening tool to evaluate the vapor intrusion (VI) risk by compared with existing VI assessment tools.

View Article and Find Full Text PDF

Vertical wells are commonly used for recirculating leachate into a landfill which can offer significant environmental and economic benefits. However, in some cases, the leachate collection and removal system (LCRS) at the bottom is overloaded and clogged due to biological and chemical processes. This results in a relatively high leachate level which could pose a threat to landfill slope stability.

View Article and Find Full Text PDF

Nowadays,the advantages of traditional Chinese medicine(TCM) for treatment of tumors are increasingly prominent.Triptolide shows wide-spectrum and highly effective anti-tumor activity. Moreover,nano-carrier-based triptolide drug delivery system is more powerful in improving water solubility and pharmacokinetic behavior of the drug,but it is easy to cause toxic and side effects that should not be neglected on human body.

View Article and Find Full Text PDF

To evaluate the pharmacodynamic effect of Siwu Decoction in treating blood deficiency in mice under multidimensional pharmacodynamic indexes by factor analysis. The mouse blood deficiency model was established with cyclophosphamide combined with acetophenone; and mouse organ index,white blood cells,red blood cell,hemoglobin,platelet counts in whole blood,serum granulocyte-macrophage colony-stimulating factor,macrophagecolony-stimulating factor,promotion erythropoietin,interleukin-3 and interleukin-6 were used as indicators to characterize the blood-enriching effect of Siwu Decoction; the pharmacodynamic effect of Siwu Decoction on blood deficiency model was evaluated comprehensively by factor analysis. Four common factors were extracted from 14 pharmacodynamics indexes through the factor analysis,namely blood phase factor,viscera index,hematopoietic regulatory factor 1-spleen index and hematopoietic regulatory factor 2-viscera index.

View Article and Find Full Text PDF