Publications by authors named "Shi-Bing Lv"

A facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thephase transformation from the NiCoZn(OH)F phase to ZnCoS and NiCoSphases and lattice defects via the Sion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics.

View Article and Find Full Text PDF

The ternary NiCoAl hydrotalcite (NiCoAl-LDH) was combined with carboxylic multi-walled carbon nanotube (MWCNT) to fabricate a novel electrochemical sensor for simultaneously determining the co-existing trace phenolic substances. The morphology, structure, and electrochemical behavior of the as-prepared materials were characterized by various techniques. Benefitting from the great conductivity of MWCNT and high electrocatalytic activity of NiCoAl-LDH for phenolic substances, the advanced MWCNT/NiCoAl-LDH sensor presented a fast response, high sensitivity, excellent stability, and satisfactory replicability.

View Article and Find Full Text PDF

The rational design of the morphological structure of electrode materials is considered as an important strategy to obtain high-performance supercapacitors. So, NiCoZnS materials with different Ni/Co/Zn molar ratios on Ni foam (NF) were synthesized, in which the Ni/Co/Zn molar ratio plays a key role in the morphological structure and electrochemical performances. Furthermore, the pre-prepared NiCoZnS materials act as substrates to guide the self-assembling of NiCoFe layered double hydroxide (LDH) nanosheets on the substrate surface to form core-shell electrode materials (NiCoZnS@NiCoFe-LDH) with a 3D mesoporous hierarchical network structure for further improving electrochemical performances.

View Article and Find Full Text PDF