Publications by authors named "Shi-Bin Cheng"

Inhibition of autophagy contributes to the pathophysiology of preeclampsia. Although chloroquine (CHQ) is an autophagy inhibitor, it can reduce the occurrence of preeclampsia in women with systemic lupus erythematosus. To clarify this important clinical question, this study aimed to address the safety of CHQ in trophoblast cells from the viewpoint of homeostasis, in which the anti-oxidative stress (OS) response and autophagy are involved.

View Article and Find Full Text PDF

Lactic acid (LA) metabolism in the tumor microenvironment contributes to the establishment and maintenance of immune tolerance. This pathway is characterized in tumor associated macrophages. However, the role and pathway of LA metabolism at maternal-fetal interface during early pregnancy, especially in decidual macrophage differentiation, are still unclear.

View Article and Find Full Text PDF

Objective: Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks.

View Article and Find Full Text PDF

Objective: The oxidative stress status and changes of chicken ovary tissue after shading were studied, to determine the mechanism of the effect of shading on follicular development.

Methods: Twenty healthy laying hens (40 weeks old) with uniform body weight and the same laying rate were randomly divided into two groups (the shading group and normal light group). In the shading group, the cage was covered to reduce the light intensity inside the cage to 0 without affecting ventilation or food intake.

View Article and Find Full Text PDF

Aggrephagy is defined as the selective degradation of aggregated proteins by autophagosomes. Protein aggregation in organs and cells has been highlighted as a cause of multiple diseases, including neurodegenerative diseases, cardiac failure, and renal failure. Aggregates could pose a hazard for cell survival.

View Article and Find Full Text PDF

Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface.

View Article and Find Full Text PDF

Pre-eclampsia is a hypertensive disease of pregnancy characterized by new-onset hypertension, with either proteinuria and/or organ dysfunction. Pre-eclampsia is a leading cause of maternal morbidity and mortality; however, the underlying cellular and molecular mechanisms are not well understood. There is consensus that the underlying mechanism(s) resulting in pre-eclampsia is centered around abnormal placentation, inadequate spiral-artery remodeling, and deficiency in trophoblast invasion, resulting in impaired maternal blood flow to the placenta and a release of signals and/or inflammatory mediators into maternal circulation triggering the systemic manifestations of pre-eclampsia.

View Article and Find Full Text PDF

Placental homeostasis is directly linked to fetal well-being and normal fetal growth. Placentas are sensitive to various environmental stressors, including hypoxia, endoplasmic reticulum stress, and oxidative stress. Once placental homeostasis is disrupted, the placenta may rebel against the mother and fetus.

View Article and Find Full Text PDF

The etiology of preeclampsia (PE), a serious pregnancy complication, remains an enigma. We have demonstrated that proteinopathy, a pathologic feature of neurodegenerative diseases, is a key observation in the placenta and serum from PE patients. We hypothesize that the macroautophagy/autophagy machinery that mediates degradation of aggregated proteins and damaged organelles is impaired in PE.

View Article and Find Full Text PDF

Systemic manifestation of preeclampsia (PE) is associated with circulating factors, including inflammatory cytokines and damage-associated molecular patterns (DAMPs), or alarmins. However, it is unclear whether the placenta directly contributes to the increased levels of these inflammatory triggers. Here, we demonstrate that pyroptosis, a unique inflammatory cell death pathway, occurs in the placenta predominantly from early onset PE, as evidenced by elevated levels of active caspase-1 and its substrate or cleaved products, gasdermin D (GSDMD), IL-1β, and IL-18.

View Article and Find Full Text PDF

Pregnancy is a stress factor culminating into mild endoplasmic reticulum (ER) stress, which is necessary for placental development. However, excessive or chronic ER stress in pre-eclamptic placentas leads to placental dysfunction. The precise mechanisms through which excessive ER stress impacts trophoblasts are not well understood.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process in eukaryotes to maintain cellular homeostasis under environmental stress. Intracellular control is exerted to produce energy or maintain intracellular protein quality controls. Autophagy plays an important role in embryogenesis, implantation, and maintenance of pregnancy.

View Article and Find Full Text PDF

There exists a strong correlation between unscheduled inflammation at the maternal-fetal interface and the continuum of pregnancy complications. In normal pregnancy, immunological tolerance is established to protect the semi-allogeneic fetus. There has been extensive research on how the immunity, endovascular trophoblast migration, and hormonal nexus are orchestrated during pregnancy at the maternal-fetal interface to program a normal pregnancy outcome.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process in eukaryotes to maintain cellular homeostasis against stress. This process has two main functions: producing energy and quality control of intracellular proteins. During early pregnancy, extravillous trophoblasts (EVTs) invade the uterine myometrium and migrate along the lumina of spiral arterioles under hypoxic and low-nutrient conditions.

View Article and Find Full Text PDF

In preeclampsia, the serum levels of transthyretin, a carrier protein for thyroxine, are elevated. Transthyretin isolated from preeclamptic serum is also aggregated and can induce preeclampsia-like symptoms in pregnant IL10 mice. Using western blotting, immunofluorescence, ELISA and qRT-PCR, we investigated the production of transthyretin by preeclamptic placentae and whether transthyretin is carried into the maternal circulation via placental extracellular vesicles.

View Article and Find Full Text PDF

DC-NK cell interactions are thought to influence the development of maternal tolerance and de novo angiogenesis during early gestation. However, it is unclear which mechanism ensures the cooperative dialogue between DC and NK cells at the feto-maternal interface. In this article, we show that uterine NK cells are the key source of IL-10 that is required to regulate DC phenotype and pregnancy success.

View Article and Find Full Text PDF

Autophagy is a well-conserved mechanism in cells from yeast to mammals, and autophagy maintains homeostasis against stress. The role of autophagy was originally shown to be a mechanism of energy production under starvation. In fact, multiple lines of evidence reveal that autophagy has numerous functions, such as protection from stress, energy regulation, immune regulation, differentiation, proliferation, and cell death.

View Article and Find Full Text PDF

Pregnancy represents a period of physiological stress, and although this stress is experienced for a very modest portion of life, it is now recognized as a window to women's future health, often by unmasking predispositions to conditions that only become symptomatic later in life. In normal pregnancy, the mother experiences mild metabolic syndrome-like condition through week 20 of gestation. A pronounced phenotype of metabolic syndrome may program pregnancy complications such as preeclampsia.

View Article and Find Full Text PDF

Characterized by hypertension and proteinuria after the 20th week of gestation, pre-eclampsia (PE) is a major cause of maternal, fetal, and neonatal morbidity and mortality. Despite being recognized for centuries, PE still lacks a reliable, early means of diagnosis or prediction, and a safe and effective therapy. We have recently reported that the event of toxic protein misfolding and aggregation is a critical etiological manifestation in PE.

View Article and Find Full Text PDF

Hyperuricemia is an independent risk factor for CKD and contributes to kidney fibrosis. In this study, we investigated the effect of EGF receptor (EGFR) inhibition on the development of hyperuricemic nephropathy (HN) and the mechanisms involved. In a rat model of HN induced by feeding a mixture of adenine and potassium oxonate, increased EGFR phosphorylation and severe glomerular sclerosis and renal interstitial fibrosis were evident, accompanied by renal dysfunction and increased urine microalbumin excretion.

View Article and Find Full Text PDF

Pregnancy is a unique and well-choreographed physiological process that involves intricate interplay of inflammatory and anti-inflammatory milieu, hormonal changes, and cellular and molecular events at the maternal-fetal interface. IL-10 is a pregnancy compatible cytokine that plays a vital role in maintaining immune tolerance. A wide array of cell types including both immune and non-immune cells secret IL-10 in an autocrine and paracrine manner.

View Article and Find Full Text PDF

Prior studies have linked renoprotective effects of estrogens to G-protein-coupled estrogen receptor-1 (GPER-1) and suggest that aldosterone may also activate GPER-1. Here, the role of GPER-1 in murine renal tissue was further evaluated by examining its anatomical distribution, subcellular distribution and steroid binding specificity. Dual immunofluorescent staining using position-specific markers showed that GPER-1 immunoreactivity primarily resides in distal convoluted tubules and the Loop of Henle (stained with Tamm-Horsfall Protein-1).

View Article and Find Full Text PDF

Preeclampsia is a major pregnancy complication with potential short- and long-term consequences for both mother and fetus. Understanding its pathogenesis and causative biomarkers is likely to yield insights for prediction and treatment. Herein, we provide evidence that transthyretin, a transporter of thyroxine and retinol, is aggregated in preeclampsia and is present at reduced levels in sera of preeclamptic women, as detected by proteomic screen.

View Article and Find Full Text PDF

Receptor down-modulation is the key mechanism by which G protein-coupled receptors (GPCRs) prevent excessive receptor signaling in response to agonist stimulation. Recently, the trans-Golgi network (TGN) has been implicated as a key checkpoint for receptor endocytosis and degradation. Here, we investigated the involvement of the TGN in down-modulation of β1-adrenergic receptor in response to persistent isoprotenerol stimulation.

View Article and Find Full Text PDF

GPER is a G(s)-coupled seven-transmembrane receptor that has been linked to specific estrogen binding and signaling activities that are manifested by plasma membrane-associated enzymes. However, in many cell types, GPER is predominately localized to the endoplasmic reticulum (ER), and only minor amounts of receptor are detectable at the cell surface, an observation that has caused controversy regarding its role as a plasma membrane estrogen receptor. Here, we show that GPER constitutively buds intracellularly into EEA-1+ endosomes from clathrin-coated pits.

View Article and Find Full Text PDF