Publications by authors named "Shi-Biao Tang"

In this work, we present a new time-bin phase-encoding quantum key distribution (QKD), where the transmitter utilizes an inherently stable Sagnac-type interferometer, and has comparable electrical requirements to existing polarization or phase encoding schemes. This approach does not require intensity calibration and is insensitive to environmental disturbances, making it both flexible and high-performing. We conducted experiments with a compact QKD system to demonstrate the stability and secure key rate performance of the presented scheme.

View Article and Find Full Text PDF

We have developed a simple time-bin phase encoding quantum key distribution system, using the optical injection locking technique. This setup incorporates both the merits of simplicity and stability in encoding, and immunity to channel disturbance. We have demonstrated the field implementation of quantum key distribution over long-distance deployed aerial fiber automatically.

View Article and Find Full Text PDF

Quantum key distribution (QKD) provides an information-theoretically secure method to share keys between legitimate users. To achieve large-scale deployment of QKD, it should be easily scalable and cost-effective. The infrastructure construction of quantum access network (QAN) expands network capacity and the integration between QKD and classical optical communications reduces the cost of channel.

View Article and Find Full Text PDF

Quantum key distribution (QKD) provides information theoretically secure key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys to kick-start the process. In previous studies, the lattice-based post-quantum digital signature algorithm Aigis-Sig, combined with public-key infrastructure (PKI), was used to achieve high-efficiency quantum security authentication of QKD, and we have demonstrated its advantages in simplifying the MAN network structure and new user entry. This experiment further integrates the PQC algorithm into the commercial QKD system, the Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes, and verifies the feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching brought by PQC authentication large-scale metropolitan area QKD network.

View Article and Find Full Text PDF

Twin-field quantum key distribution (TF-QKD) has attracted considerable attention and developed rapidly due to its ability to surpass the fundamental rate-distance limit of QKD. However, the device imperfections may compromise its practical implementations. The goal of this paper is to make it robust against the state preparation flaws (SPFs) and side channels at the light source.

View Article and Find Full Text PDF

Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, several demonstrations of TF-QKD have been realized.

View Article and Find Full Text PDF

A novel method for the Rh(iii)-catalyzed oxime-directed C-H amidation of indoles with dioxazolones has been developed. This strategy provides an exclusive site selectivity and the directing group can be easily removed. This transformation features a wide substrate scope, good functional group tolerance and excellent yields, and may serve as a significant tool to construct structurally diverse indole derivatives for the screening of potential pharmaceuticals in the future.

View Article and Find Full Text PDF

Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique, QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber.

View Article and Find Full Text PDF

Quantum effects, besides offering substantial superiority in many tasks over classical methods, are also expected to provide interesting ways to establish secret keys between remote parties. A striking scheme called "counterfactual quantum cryptography" proposed by Noh [Phys. Rev.

View Article and Find Full Text PDF

The detector quantum efficiency (DQE) of a linear plastic scintillating fiber (PSF) array coupled with a charge-coupled device (CCD) for hard gamma-ray imaging is studied using a Monte Carlo simulation. The focus is on the energy from a few MeV to about 12 MeV. The excellent characteristic of PSF offers a method to balance the detection efficiency and spatial resolution.

View Article and Find Full Text PDF

Due to their low cost, flexibility, and convenience for long distance data transfer, plastic scintillating fibers (PSFs) have been increasingly used in building detectors or sensors for detecting various radiations and imaging. In this work, the possibility of using PSF coupled with charge-coupled devices (CCD) to build area detectors for X-ray imaging is studied using a Monte Carlo simulation. The focus is on X-ray imaging with energy from a few 100 keV to about 20 MeV.

View Article and Find Full Text PDF