Publications by authors named "Shi Zhang Chen"

The design and control of spintronic devices is a research hotspot in the field of electronics, and pure carbon-based materials provide new opportunities for the construction of electronic devices with excellent performance. Using density functional theory in combination with nonequilibrium Green's functions method, we design spin filter devices based on Penta-hexa-graphene (PHG) nanoribbons-a carbon nanomaterial in which the intrinsic magnetic moments combines with edge effects leading to a half-metallic property. Spin-resolved electronic transport studies show that such carbon-based devices can achieve nearly 100% spin filtering effect at low bias voltages.

View Article and Find Full Text PDF

Two-dimensional materials with intrinsic long-range ordered magnetic moments have drawn a lot of attention. However, for practical applications, whether or not the magnetism is stable in their nanostructures has not been revealed. Here, based on the recently proposed magnetic penta-hexa-graphene, we study the electronic and magnetic properties of its nanoribbons (named PHGNRs).

View Article and Find Full Text PDF

Nodal surface-based topological semimetals (TSMs) are drawing attention due to their unique excitation and plasmon behaviors. However, only nodal flat-surface and nodal sphere TSMs are theoretically proposed due to strict symmetry requirements. Here, we propose that a series of surface-based topological phases can be realized in a tight-binding (TB) model with sublattice symmetry.

View Article and Find Full Text PDF

We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink.

View Article and Find Full Text PDF

Using a scanning tunneling microscope, we measured high-bias conductance of single polyporphyrin molecular wires with lengths from 1.3 to 13 nm. We observed several remarkable transport characteristics, including multiple sharp conductance peaks, conductances as high as 20 nS in wires with lengths of >10 nm, and nearly length-independent conductance (attenuation <0.

View Article and Find Full Text PDF