Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer’s disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.
View Article and Find Full Text PDFBackground: There are no cures for Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta‐amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate‐degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta‐amyloid and tau elevation.
View Article and Find Full Text PDFVenous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbβ3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbβ3 inhibitory drugs such as tirofiban (Aggrastat ).
View Article and Find Full Text PDFPhosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD.
View Article and Find Full Text PDFWe previously identified the -quinoline-benzenesulfonamide (NQBS) scaffold as a potent inhibitor of nuclear factor-κB (NF-κB) translocation. Now, we report the structure-activity relationship of compounds with the NQBS scaffold in models of diffuse large B-cell lymphoma (DLBCL). We identified CU-O42, CU-O47, and CU-O75 as NQBS analogs with the most potent cytotoxic activity in DLBCL lines.
View Article and Find Full Text PDFEnhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes.
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models.
View Article and Find Full Text PDFBackground: Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown.
Methods: This work used a combination of biochemical, electrophysiological and behavioral techniques.
Prostaglandins Other Lipid Mediat
May 2018
We have previously identified and reported several potent piperidine-derived amide inhibitors of the human soluble epoxide hydrolase (sEH) enzyme. The inhibition of this enzyme leads to elevated levels of epoxyeicosatrienoic acids (EETs), which are known to possess anti-inflammatory, vasodilatory, and anti-fibrotic effects. Herein, we report the synthesis of 9 analogs of the lead sEH inhibitor and the follow-up structure-activity relationship and liver microsome stability studies.
View Article and Find Full Text PDFPhosphodiesterase 5 (PDE5) hydrolyzes cyclic guanosine monophosphate (cGMP) leading to increased levels of the cAMP response element binding protein (CREB), a transcriptional factor involved with learning and memory processes. We previously reported potent quinoline-based PDE5 inhibitors (PDE5Is) for the treatment of Alzheimer's disease (AD). However, the low aqueous solubility rendered them undesirable drug candidates.
View Article and Find Full Text PDFPhosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells.
View Article and Find Full Text PDFThe identification of ligands that bind the protein Neutrophil Gelatinase-Associated Lipocalin (NGAL, Siderocalin, Lipocalin-2) have helped to elucidate its function. NGAL-Siderocalin binds and sequesters the iron loaded bacterial siderophore enterochelin (Ent), defining the protein as an innate immune effector. Simple metabolic catechols can also form tight complexes with NGAL-Siderocalin and ferric iron, suggesting that the protein may act as an iron scavenger even in the absence of Ent.
View Article and Find Full Text PDFThe prevalence of obesity-induced type 2 diabetes (T2D) is increasing worldwide, and new treatment strategies are needed. We recently discovered that obesity activates a previously unknown pathway that promotes both excessive hepatic glucose production (HGP) and defective insulin signaling in hepatocytes, leading to exacerbation of hyperglycemia and insulin resistance in obesity. At the hub of this new pathway is a kinase cascade involving calcium/calmodulin-dependent protein kinase II (CaMKII), p38α mitogen-activated protein kinase (MAPK), and MAPKAPK2/3 (MK2/3).
View Article and Find Full Text PDFEquilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1).
View Article and Find Full Text PDFAccumulated evidence indicates that the interconversion of iron between ferric (Fe(3+)) and ferrous (Fe(2+)) can be realized through interaction with reactive oxygen species in the Fenton and Haber-Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance.
View Article and Find Full Text PDFPhosphodiesterase type 5 (PDE5) mediates the degradation of cGMP in a variety of tissues including brain. Recent studies have demonstrated the importance of the nitric oxide/cGMP/cAMP-responsive element-binding protein (CREB) pathway to the process of learning and memory. Thus, PDE5 inhibitors (PDE5Is) are thought to be promising new therapeutic agents for the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by memory loss.
View Article and Find Full Text PDFA series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.
View Article and Find Full Text PDFInhibition of soluble epoxide hydrolase (sEH) has been proposed as a new pharmaceutical approach for treating hypertension and vascular inflammation. The most potent sEH inhibitors reported in literature to date are urea derivatives. However, these compounds have limited pharmacokinetic profiles.
View Article and Find Full Text PDFThe lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has recently been identified as a promising drug target for human autoimmunity diseases. Like the majority of protein-tyrosine phosphatases LYP can adopt two functionally distinct forms determined by the conformation of the WPD-loop. The WPD-loop plays an important role in the catalytic dephosphorylation by protein-tyrosine phosphatases.
View Article and Find Full Text PDFMany proteins have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarker characteristics that link the protein to the injured organ have not yet been described. We generated an Ngal reporter mouse by inserting a double-fusion reporter gene encoding luciferase-2 and mCherry (Luc2-mC) into the Ngal (Lcn2) locus. The Ngal-Luc2-mC reporter accurately recapitulated the endogenous message and illuminated injuries in vivo in real time.
View Article and Find Full Text PDFThe lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity.
View Article and Find Full Text PDF