Publications by authors named "Shi'an Wang"

Aims: The astaxanthin-producing yeast Xanthophyllomyces dendrorhous is widely used in aquaculture. Due to the production of carotenoid, this yeast shows visible color; however, high-throughput approaches for identification of astaxanthin-overproducing strains remain rare.

Methods And Results: This study verified an effective approach to identify astaxanthin-overproducing mutants of X.

View Article and Find Full Text PDF

Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2.

View Article and Find Full Text PDF

Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications.

View Article and Find Full Text PDF

Astaxanthin is a type of carotenoid widely used as powerful antioxidant and colourant in aquaculture and the poultry industry. Production of astaxanthin by yeast Xanthophyllomyces dendrorhous has attracted increasing attention due to high cell density and low requirements of water and land compared to photoautotrophic algae. Currently, the regulatory mechanisms of astaxanthin synthesis in X.

View Article and Find Full Text PDF

DNA repair after Cas9 cutting can result in deletions/insertions, genomic rearrangements, and rare nucleotide substitutions. However, most work has only focused on deletions/insertions resulting from repair after CRISPR-Cas9 action. Here, we comprehensively analyzed the editing outcomes induced by CRISPR-Cas9 treatment in yeast by Sanger and Illumina sequencing and identified diverse DNA repair patterns, including DNA deletions, interchromosomal translocations, and on-target nucleotide substitutions (point mutations).

View Article and Find Full Text PDF

Background: Echinococcosis is a global zoonotic parasitic disease caused by Echinococcus larvae. This disease is highly endemic in Sichuan Province, China. This study investigates the prevalence and spatial distribution characteristics of human echinococcosis at the township level in Sichuan Province, geared towards providing a future reference for the development of precise prevention and control strategies.

View Article and Find Full Text PDF

Selectable marker recycling is a basic technique in bioengineering. However, this technique is usually unavailable in non-model microorganisms. In this study, we proposed a simple and efficient method for selectable marker recycling in the astaxanthin-synthesizing yeast Xanthophyllomyces dendrorhous.

View Article and Find Full Text PDF

Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts.

View Article and Find Full Text PDF

Commercial fructo-oligosaccharides (FOS) are predominantly produced from sucrose by transfructosylation process that presents a maximum theoretical yield below 0.60gFOSgSucrose(-1). To obtain high-content FOS, costly purification is generally employed.

View Article and Find Full Text PDF

Background: The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts.

View Article and Find Full Text PDF

Four strains of a novel ascomycetous yeast species were isolated from flowers in Iran and China. Phylogenetic analysis of the sequences of the ITS region (including 5.8S rRNA gene) and the LSU rRNA gene D1/D2 domains indicated that these strains belong to the Starmerella clade and show divergence from previously described species in this clade.

View Article and Find Full Text PDF

The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast.

View Article and Find Full Text PDF

In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities.

View Article and Find Full Text PDF

To improve inulin utilization and ethanol fermentation, exoinulinase genes from the yeast Kluyveromyces marxianus and the recently identified yeast, Candida kutaonensis, were expressed in Saccharomyces cerevisiae. S. cerevisiae harboring the exoinulinase gene from C.

View Article and Find Full Text PDF

It is hypothesized that introduction of an endoinulinase gene into Saccharomyces cerevisiae will improve its inulin utilization and ethanol fermentation through collaboration between the heterologous endoinulinase and the inherent invertase SUC2. The aim of this work was to test the hypothesis by introducing the endoinulinase gene inuA from Aspergillus niger into S. cerevisiae.

View Article and Find Full Text PDF

Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

View Article and Find Full Text PDF

The budding yeast, Saccharomyces cerevisiae, is a leading system in genetics, genomics and molecular biology and is becoming a powerful tool to illuminate ecological and evolutionary principles. However, little is known of the ecology and population structure of this species in nature. Here, we present a field survey of this yeast at an unprecedented scale and have performed population genetics analysis of Chinese wild isolates with different ecological and geographical origins.

View Article and Find Full Text PDF

Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 °C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.

View Article and Find Full Text PDF

A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.

View Article and Find Full Text PDF

During a study of newly isolated yeast strains utilizing d-xylose as sole carbon source, eight strains, isolated from decayed wood, were found to represent two novel anamorphic, ascomycetous yeast species based on sequence analysis of the 26S rDNA D1/D2 domain and internal transcribed spacer region, and phenotypic characterization. The names Candida laoshanensis sp. nov.

View Article and Find Full Text PDF

Objective: To explore the spatial distribution and elimination of Oncomelania hupensis in mountainous regions.

Methods: Puge County in Tezi township was selected as the study site and the quadratus were placed randomly to investigate snail. The two sods with water were selected as the sites of snail elimination.

View Article and Find Full Text PDF

Single-strand conformation polymorphism (SSCP) analysis of ribosomal DNA (rDNA) was investigated for rapid differentiation of phenotypically similar yeast species. Sensitive tests indicated that some yeast strains with one, most strains with two, and all strains with three or more nucleotide differences in the internal transcribed spacer 1 (ITS1) or ITS2 region could be distinguished by PCR SSCP analysis. The discriminative power of SSCP in yeast species differentiation was demonstrated by comparative studies of representative groups of yeast species from ascomycetes and basidiomycetes, including Saccharomyces species, medically important Candida species, and phylloplane basidiomycetous yeast species.

View Article and Find Full Text PDF

In a taxonomic study on the ascomycetous yeasts isolated from plant materials collected in tropical forests in Yunnan and Hainan Provinces, southern China, four strains isolated from tree sap (YJ2E(T)) and flowers (YF9E(T), YWZH3C(T) and YYF2A(T)) were revealed to represent four undescribed yeast species. Molecular phylogenetic analysis based on the large subunit (26S) rRNA gene D1/D2 domain sequences showed that strain YJ2E(T) was located in a clade together with Candida haemulonii and C. pseudohaemulonii.

View Article and Find Full Text PDF

Three ascomycetous yeast strains, H-6(T), ZX-15 and ZX-20, isolated from the bark of two tree species of the family Fagaceae collected from different regions of China, formed unconjugated and persistent asci containing two to four globose ascospores. 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region (including 5.8S rDNA) sequence analysis showed that they were closely related to the currently accepted Saccharomyces species with strong support.

View Article and Find Full Text PDF