Med Image Comput Comput Assist Interv
January 2013
Automated robust segmentation of intra-ventricular septum (IVS) from B-mode echocardiographic images is an enabler for early quantification of cardiac disease. Segmentation of septum from ultrasound images is very challenging due to variations in intensity/contrast in and around the septum, speckle noise and non-rigid shape variations of the septum boundary. In this work, we effectively address these challenges using an approach that merges novel computer vision ideas with physiological markers present in cardiac scans.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
In this work, we address the problem of automated measurement of the interventricular septum thickness, one of the key parameters in cardiology, from B-mode echocardiograms. The problem is challenging due to high levels of noise, multi modal intensity, weak contrast due to near field haze, and non rigid motion of the septum across frames. We introduce a complete system for automated measurement of septum thickness from B-mode echocardiograms incorporating three main components: a 1D curve evolution algorithm using region statistics for segmenting the septum, a motion clustering method to locate the mitral valve, and a robust method to calculate the septum width from these inputs in accordance with medical standards.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
In this work, we find meaningful parameterizations of cortical surfaces utilizing prior anatomical information in the form of anatomical landmarks (sulci curves) on the surfaces. Specifically we generate close to conformal parametrizations that also give a shape-based correspondence between the landmark curves. We propose a variational energy that measures the harmonic energy of the parameterization maps, and the shape dissimilarity between mapped points on the landmark curves.
View Article and Find Full Text PDF