Regulators of G protein signaling (RGS proteins) constitute a family of newly appreciated components of G protein-mediated signal transduction. With few exceptions, most information available on mammalian RGS proteins was gained by transfection/overexpression or in vitro experiments, with relatively little known about the endogenous counterparts. Transfection studies, typically of tagged RGS proteins, have been conducted to overcome the low natural abundance of endogenous RGS proteins.
View Article and Find Full Text PDFRegulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer.
View Article and Find Full Text PDFThe regulators of G-protein signaling (RGS) proteins are important regulatory and structural components of G-protein coupled receptor complexes. RGS proteins are GTPase activating proteins (GAPs) of Gi-and Gq-class Galpha proteins, and thereby accelerate signaling kinetics and termination. Here, we mapped the chromosomal positions of all 21 Rgs genes in mouse, and determined human RGS gene structures using genomic sequence from partially assembled bacterial artificial chromosomes (BACs) and Celera fragments.
View Article and Find Full Text PDF