Publications by authors named "Sheryl L Chang"

Background: The COVID-19 pandemic stressed public health systems worldwide due to emergence of several highly transmissible variants of concern. Diverse and complex intervention policies deployed over the last years have shown varied effectiveness in controlling the pandemic. However, a systematic analysis and modelling of the combined effects of different viral lineages and complex intervention policies remains a challenge due to the lack of suitable measures of pandemic inequality and nonlinear effects.

View Article and Find Full Text PDF

Modelling evolution of foodborne pathogens is crucial for mitigation and prevention of outbreaks. We apply network-theoretic and information-theoretic methods to trace evolutionary pathways ofTyphimurium in New South Wales, Australia, by studying whole genome sequencing surveillance data over a five-year period which included several outbreaks. The study derives both undirected and directed genotype networks based on genetic proximity, and relates the network's structural property (centrality) to its functional property (prevalence).

View Article and Find Full Text PDF

We modelled emergence and spread of the Omicron variant of SARS-CoV-2 in Australia between December 2021 and June 2022. This pandemic stage exhibited a diverse epidemiological profile with emergence of co-circulating sub-lineages of Omicron, further complicated by differences in social distancing behaviour which varied over time. Our study delineated distinct phases of the Omicron-associated pandemic stage, and retrospectively quantified the adoption of social distancing measures, fluctuating over different time periods in response to the observable incidence dynamics.

View Article and Find Full Text PDF

A major outbreak of the globally significant Salmonella Enteritidis foodborne pathogen was identified within a large clinical data set by a program of routine WGS of clinical presentations of salmonellosis in New South Wales, Australia. Pangenome analysis helped to quantify and isolate prophage content within the accessory partition of the pangenome. A prophage similar to Gifsy-1 (henceforth GF-1L) was found to occur in all isolates of the outbreak core SNP cluster, and in three other isolates.

View Article and Find Full Text PDF

The COVID-19 pandemic has brought the combined disciplines of public health, infectious disease and policy modelling squarely into the spotlight. Never before have decisions regarding public health measures and their impacts been such a topic of international deliberation, from the level of individuals and communities through to global leaders. Nor have models-developed at rapid pace and often in the absence of complete information-ever been so central to the decision-making process.

View Article and Find Full Text PDF

Objectives: To enhance monitoring of high-burden foodborne pathogens, there is opportunity to combine pangenome data with network analysis.

Methods: Salmonella enterica subspecies Enterica serovar Enteritidis isolates were referred to the New South Wales (NSW) Enteric Reference Laboratory between August 2015 and December 2019 (1033 isolates in total), inclusive of a confirmed outbreak. All isolates underwent whole genome sequencing.

View Article and Find Full Text PDF

To prevent future outbreaks of COVID-19, Australia is pursuing a mass-vaccination approach in which a targeted group of the population comprising healthcare workers, aged-care residents and other individuals at increased risk of exposure will receive a highly effective priority vaccine. The rest of the population will instead have access to a less effective vaccine. We apply a large-scale agent-based model of COVID-19 in Australia to investigate the possible implications of this hybrid approach to mass-vaccination.

View Article and Find Full Text PDF

There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoing COVID-19 pandemic in Australia. This model is calibrated to match key characteristics of COVID-19 transmission.

View Article and Find Full Text PDF

We review research studies which use game theory to model the decision-making of individuals during an epidemic, attempting to classify the literature and identify the emerging trends in this field. The literature is classified based on (i) type of population modelling (classical or network-based), (ii) frequency of the game (non-repeated or repeated), and (iii) type of strategy adoption (self-learning or imitation). The choice of model is shown to depend on many factors such as the immunity to the disease, the strength of immunity conferred by the vaccine, the size of population and the level of mixing therein.

View Article and Find Full Text PDF

We present a series of SIR-network models, extended with a game-theoretic treatment of imitation dynamics which result from regular population mobility across residential and work areas and the ensuing interactions. Each considered SIR-network model captures a class of vaccination behaviours influenced by epidemic characteristics, interaction topology, and imitation dynamics. Our focus is the resultant vaccination coverage, produced under voluntary vaccination schemes, in response to these varying factors.

View Article and Find Full Text PDF