Publications by authors named "Sheryl Flanagan"

Programmed death-ligand 1 (PD-L1) promotes tumor immune evasion by engaging the PD-1 receptor and inhibiting T-cell activity. While the regulation of PD-L1 expression is not fully understood, its expression is associated with tumor mutational burden and response to immune checkpoint therapy. Here, we report that Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) is an important regulator of expression.

View Article and Find Full Text PDF

PARP inhibitor monotherapy (olaparib) was recently FDA approved for the treatment of BRCA1/2-mutant, homologous recombination (HR) repair-deficient pancreatic cancer. Most pancreatic cancers, however, are HR proficient and thus resistant to PARP inhibitor monotherapy. We tested the hypothesis that combined therapy with radiation and ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) would extend the therapeutic indication of olaparib to HR-proficient pancreatic cancers.

View Article and Find Full Text PDF

Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination.

View Article and Find Full Text PDF

Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage.

View Article and Find Full Text PDF

Gemcitabine (difluorodeoxycytidine; dFdCyd) is a potent radiosensitizer, noted for its ability to enhance cytotoxicity with radiation at noncytotoxic concentrations in vitro and subchemotherapeutic doses in patients. Radiosensitization in human tumor cells requires dFdCyd-mediated accumulation of cells in S phase with inhibition of ribonucleotide reductase, resulting in ≥80% deoxyadenosine triphosphate (dATP) depletion and errors of replication in DNA. Less is known of the role of specific DNA replication and repair pathways in the radiosensitization mechanism.

View Article and Find Full Text PDF

The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs.

View Article and Find Full Text PDF

The down-regulation of dominant oncogenes, including C-MYC, in tumor cells often leads to the induction of senescence via mechanisms that are not completely identified. In the current study, we demonstrate that MYC-depleted melanoma cells undergo extensive DNA damage that is caused by the underexpression of thymidylate synthase (TS) and ribonucleotide reductase (RR) and subsequent depletion of deoxyribonucleoside triphosphate pools. Simultaneous genetic inhibition of TS and RR in melanoma cells induced DNA damage and senescence phenotypes very similar to the ones caused by MYC-depletion.

View Article and Find Full Text PDF

In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence.

View Article and Find Full Text PDF

Purpose: To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur.

Methods And Materials: shRNA suppression of TS was compared with 5-fluoro-2'-deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay.

View Article and Find Full Text PDF

The antitumor drug 5-fluoro-2'-deoxyuridine (FdUrd) also sensitizes tumor cells to ionizing radiation in vitro and in vivo. Although radiosensitization with FdUrd requires dTTP depletion and S-phase arrest, the exact mechanism by which these events produce radiosensitization remains unknown. We hypothesized that the depletion of dTTP produces DNA mismatches that, if not repaired before irradiation, would result in radiosensitization.

View Article and Find Full Text PDF

Guanosine initiated apoptosis in NB4 cells in a transport-dependent manner. Apoptosis was partially attributed to an imbalance in nucleosides with some protection upon the addition of pyrimidines. The effect of guanosine on cell proliferation and viability was biphasic whereby cells were able to recover from an initial cell cycle arrest and re-enter the cell cycle upon removal of guanosine in a time-dependent fashion.

View Article and Find Full Text PDF

Radiation sensitization by 2',2'-difluoro-2'-deoxycytidine (dFdCyd) has correlated with dATP depletion [dFdCDP-mediated inhibition of ribonucleotide reductase (RR)] and S-phase accumulation. We hypothesized that radiosensitization by dFdCyd is due to nucleotide misincorporations in the presence of deoxynucleotide triphosphate pool imbalances, which, if not repaired, augments cell death following irradiation. The ability of dFdCyd to produce misincorporations was measured as pSP189 plasmid mutations in hMLH1-deficient [mismatch repair (MMR) deficient] and hMLH1-expressing (MMR proficient) HCT116 cells.

View Article and Find Full Text PDF

NB4 cells express multiple nucleoside transporters (NTs), including: hENT1 (es), and hENT2 (ei), and the CNT subtype referred to as, csg; a concentrative sensitive guanosine specific transporter. csg activity is a distinguishing feature of the NB4 cell line and its presence suggests a particular requirement of these cells for guanosine salvage. Proliferation and differentiation pathways determine, in part, the number of NTs in cells and tissues.

View Article and Find Full Text PDF

We studied acceptance of various deoxyguanosine analogues by the unique guanosine preferring nucleoside transport system exhibited by NB4 cells, csg. Indirect assessment of acceptance using transport inhibition assays revealed that both 1-beta-D-arabinofuranosylguanine (ara-G) and 4'-thio-beta-D-xylofuranosylguanine (thio-xyl-G) compete with guanosine for the csg system, inhibiting guanosine flux by approximately 50%. Direct examination of [3H]-ara-G transport revealed total transport was equally allocated to csg, and es systems and a total transport rate similar to that determined for guanosine [Flanagan and Meckling-Gill, J Biol Chem 1997;272:18026-32].

View Article and Find Full Text PDF