Since 2014, widespread, annual mortality events involving multiple species of seabirds have occurred in the Gulf of Alaska, Bering Sea, and Chukchi Sea. Among these die-offs, emaciation was a common finding with starvation often identified as the cause of death. However, saxitoxin (STX) was detected in many carcasses, indicating exposure of these seabirds to STX in the marine environment.
View Article and Find Full Text PDFSmall molecules that bind to voltage-gated sodium channels (VGSCs) are promising leads in the treatment of numerous neurodegenerative diseases and pain. Nature is a highly skilled medicinal chemist in this regard, designing potent VGSC ligands capable of binding to and blocking the channel, thereby offering compounds of potential therapeutic interest. Paralytic shellfish toxins (PSTs), produced by cyanobacteria and marine dinoflagellates, are examples of these naturally occurring small molecule VGSC blockers that can potentially be leveraged to solve human health concerns.
View Article and Find Full Text PDFThe remarkable degree of synthetic selectivity found in Nature is exemplified by the biosynthesis of paralytic shellfish toxins such as saxitoxin. The polycyclic core shared by saxitoxin and its relatives is assembled and subsequently elaborated through the installation of hydroxyl groups with exquisite precision that is not possible to replicate with traditional synthetic methods. Here, we report the identification of the enzymes that carry out a subset of C-H functionalizations involved in paralytic shellfish toxin biosynthesis.
View Article and Find Full Text PDFBackground: During an October 2005 algal bloom (i.e., a rapid increase or accumulation in the population of algae) off the coast of Nicaragua, 45 people developed symptoms of paralytic shellfish poisoning (PSP) and one person died.
View Article and Find Full Text PDFInjectable local anesthetics that would last for many days could have a marked impact on periprocedural care and pain management. Formulations have often been limited in duration of action, or by systemic toxicity, local tissue toxicity from local anesthetics, and inflammation. To address those issues, we developed liposomal formulations of saxitoxin (STX), a compound with ultrapotent local anesthetic properties but little or no cytotoxicity.
View Article and Find Full Text PDFThe adsorption of saxitoxin to Na- and Ca-montmorillonite, kaolin (crystalline and amorphous), kaolinite, Bread and Butter Creek sediment (an estuarine tidal creek), Gulf of Mexico sediment, and Santa Barbara Basin sediment in deionized water and 32 per thousand salinity simulated seawater (Instant Ocean) is reported. Adsorption was partially reversible for all cases and best described using a Freundlich isotherm. The corresponding Freundlich constants (K(F)) ranged from 8.
View Article and Find Full Text PDFSaxitoxin and neosaxitoxin are potent neurotoxins that can cause paralytic shellfish poisoning when consumed. A new assay is presented here to quantify saxitoxin (STX) and neosaxitoxin (NEO) in human urine samples. Sample preparation of 500-microL samples included the use of weak-cation-exchange solid-phase extraction in a multiplexed 96-well format.
View Article and Find Full Text PDFThe rapid detection and quantification of saxitoxin (STX) is reported using surface-enhanced Raman spectroscopy (SERS) with a colloidal hydrosol of silver nanoparticles. Under the conditions of our experiments, the limit of detection (LD) for STX using SERS is 3 nM, with a limit of quantification (LQ) of 20 nM. It is shown that the SERS method is rapid, with spectra being collected in as little as 5 seconds total integration time for a 40 nM STX sample.
View Article and Find Full Text PDFBackground: From January 2002 to May 2004, 28 puffer fish poisoning (PFP) cases in Florida, New Jersey, Virginia, and New York were linked to the Indian River Lagoon (IRL) in Florida. Saxitoxins (STXs) of unknown source were first identified in fillet remnants from a New Jersey PFP case in 2002.
Methods: We used the standard mouse bioassay (MBA), receptor binding assay (RBA), mouse neuroblastoma cytotoxicity assay (MNCA), Ridascreen ELISA, MIST Alert assay, HPLC, and liquid chromatography-mass spectrometry (LC-MS) to determine the presence of STX, decarbamoyl STX (dc-STX), and N-sulfocarbamoyl (B1) toxin in puffer fish tissues, clonal cultures, and natural bloom samples of Pyrodinium bahamense from the IRL.