Background: In eukaryotic cells, RNA-binding proteins (RBPs) contribute to gene expression by regulating the form, abundance, and stability of both coding and non-coding RNA. In the vertebrate brain, RBPs account for many distinctive features of RNA processing such as activity-dependent transcript localization and localized protein synthesis. Several RBPs with activities that are important for the proper function of adult brain have been identified, but how many RBPs exist and where these genes are expressed in the developing brain is uncharacterized.
View Article and Find Full Text PDFChemically induced long-term potentiation (cLTP) could potentially work by directly stimulating the biochemical machinery that underlies synaptic plasticity, bypassing the need for synaptic activation. Previous reports suggested that agents that raise cAMP concentration might have this capability. We examined the cLTP induced in acute slices by application of Sp-cAMPS or a combination of the adenylyl cyclase activator, forskolin, and the phosphodiesterase inhibitor, rolipram.
View Article and Find Full Text PDF