Publications by authors named "Sherry R Chemler"

Rituximab combined with systemic chemotherapy significantly improves the rate of complete response in B-cell lymphomas. However, acquired rituximab resistance develops in most patients leading to relapse. The mechanisms underlying rituximab resistance are not well-understood.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional ways to produce these radicals involve using radical initiators like peroxides, AIBN, and tin hydrides.
  • * Recent advancements now include using copper catalysis to generate nitrogen-centered radicals, with some methods being specifically designed to achieve enantioselectivity using chiral copper complexes.
View Article and Find Full Text PDF

The rapid synthesis of a range of enantioenriched allylic esters is enabled by a new 3-component catalytic enantioselective 1,2-carboesterification of readily available dienes with carboxylic acids and potassium alkyltrifluoroborates. The chiral copper catalyst, formed in situ from Cu(OTf) and (4,4')-2,2'-(cyclopentane-1,1-diyl)bis(4-phenyl-4,5-dihydrooxazole), is implicated in both the generation of alkyl radicals from the alkyltrifluoroborates as well as the enantioselective formation of C-O bonds. Potassium salts of primary and secondary alkyltrifluoroborates as well as several benzylic trifluoroborates, -butyltrifluoroborate, and phenyltrifluoroborate participate in the reaction.

View Article and Find Full Text PDF

Alkene aminooxygenation and dioxygenation reactions that result in carbonyl products are uncommon, and protocols that control absolute stereochemistry are rare. We report herein catalytic enantioselective alkene aminooxygenation and dioxygenation that directly provide enantioenriched 2-formyl saturated heterocycles under aerobic conditions. Cyclization of substituted 4-pentenylsulfonamides, catalyzed by readily available chiral copper complexes and employing molecular oxygen as both oxygen source and stoichiometric oxidant, directly provides chiral 2-formyl pyrrolidines efficiently.

View Article and Find Full Text PDF

Saturated heterocycles containing oxygen and sulfur are found in biologically significant molecules. The enantioselective oxysulfenylation of alkenols provides a straightforward synthesis route. To date, organocatalytic methods have dominated this approach.

View Article and Find Full Text PDF

MDM2 and MDM4 are cancer drug targets validated in multiple models for p53-based cancer therapies. The RING domains of MDM2 and non-p53-binder MDM2 splice isoforms form RING domain heterodimer polyubiquitin E3 ligases with MDM4, which regulate p53 stability in vivo and promote tumorigenesis independent of p53. Despite the importance of the MDM2 RING domain in p53 regulation and cancer development, small molecule inhibitors targeting the E3 ligase activity of MDM2-MDM4 are poorly explored.

View Article and Find Full Text PDF

MDM2 and MDM4 proteins are key negative regulators of tumor suppressor p53. MDM2 and MDM4 interact their RING domains and form a heterodimer polyubiquitin E3 ligase essential for p53 degradation. MDM4 also forms heterodimer E3 ligases with MDM2 isoforms that lack p53-binding domains, which regulate p53 and MDM4 stability.

View Article and Find Full Text PDF

High frequency of KRAS and TP53 mutations is a unique genetic feature of pancreatic ductal adenocarcinoma (PDAC). TP53 mutation not only renders PDAC resistance to chemotherapies but also drives PDAC invasiveness. Therapies targeting activating mutant KRAS are not available and the outcomes of current PDAC treatment are extremely poor.

View Article and Find Full Text PDF

The enantioselective copper-catalyzed oxidative coupling of alkenols with styrenes for the construction of dihydropyrans, isochromans, pyrans and morpholines is reported. A concise formal synthesis of a σ receptor ligand using this alkene carboetherification methodology was demonstrated. Ligand, solvent and base all impact reaction efficiency.

View Article and Find Full Text PDF

Reduction of waste is an important goal of modern organic synthesis. We report herein oxidase reactivity for enantioselective intramolecular copper-catalyzed alkene carboamination and carboetherification reactions where previously used stoichiometric MnO has been replaced with oxygen. This substitution was risky as the reaction mechanism is thought to involve C-C bond formation via addition of alkyl carbon radicals to arenes.

View Article and Find Full Text PDF

Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation.

View Article and Find Full Text PDF

Bridged bicyclic ketals display a range of bioactivities. Their catalytic enantioselective synthesis from acyclic 1,1-disubstituted alkene diols is disclosed. This reaction combines asymmetric catalysis with a distal radical migration.

View Article and Find Full Text PDF

A direct assembly of secondary benzylureas and related amine derivatives via copper-catalyzed carboamination of styrenes with potassium alkyltrifluoroborates and ureas, anilines, or an amide is reported. Terminal and 1,2-disubstituted alkenes, as well as dienes, participate in this three-component coupling reaction. The reaction mechanism likely involves the addition of an alkyl radical to the styrene, followed by metal-mediated oxidative coupling of the resulting benzylic radical with the amine derivative.

View Article and Find Full Text PDF

The copper-catalyzed enantioselective intramolecular hydroalkoxylation of unactivated alkenes for the synthesis of tetrahydrofurans, phthalans, isochromans, and morpholines from 4- and 5-alkenols is reported. The substrate scope is complementary to existing enantioselective alkene hydroalkoxylations and is broad with respect to substrate backbone and alkene substitution. The asymmetric induction and isotopic labeling studies support a polar/radical mechanism involving enantioselective oxycupration followed by C-[Cu] homolysis and hydrogen atom transfer.

View Article and Find Full Text PDF

Saturated heterocycles are important components of many bioactive compounds. The method disclosed herein enables a general route to a range of 5-, 6- and 7-membered oxygen and nitrogen heterocycles by coupling potassium alkyltrifluoroborates with heteroatom-tethered alkenes, predominantly styrenes, under copper-catalyzed conditions, in the presence of MnO. The method was applied to the synthesis of the core of the anti-depressant drug citalopram.

View Article and Find Full Text PDF

Necroptosis is a form of regulated cell death which results in loss of plasma membrane integrity, release of intracellular contents, and an associated inflammatory response. We previously found that saturated very long chain fatty acids (VLCFAs), which contain ≥20 carbons, accumulate during necroptosis. Here, we show that genetic knockdown of Fatty Acid (FA) Elongase 7 (ELOVL7) reduces accumulation of specific very long chain FAs during necroptosis, resulting in reduced necroptotic cell death and membrane permeabilization.

View Article and Find Full Text PDF

Enantiomerically enriched phthalans were synthesized efficiently via an enantioselective copper-catalyzed alkene carboetherification reaction. In this reaction, 2-vinylbenzyl alcohols enantioselectively cyclize then couple with vinylarenes. The utility of the method was demonstrated by the enantioselective synthesis of ( R)-fluspidine, a σ receptor ligand.

View Article and Find Full Text PDF

Spirocyclic ethers can be found in bioactive compounds. This copper-catalyzed enantioselective alkene carboetherification provides 5,5-, 5,6- and 6,6-spirocyclic products containing fully substituted chiral carbon centers with up to 99 % enantiomeric excess. This reaction features the formation of two rings from acyclic substrates, 1,1-disubstituted alkenols functionalized with either arenes, alkenes, or alkynes, and clearly constitutes a powerful way to synthesize chiral spirocyclic ethers.

View Article and Find Full Text PDF

A convenient copper-catalyzed intramolecular/intermolecular alkene diamination reaction to synthesize 3-aminomethyl-functionalized isoxazolidines under mild reaction conditions and with generally high levels of diastereoselectivity was achieved. This reaction demonstrates that previously underutilized unsaturated carbamates are good [Cu]-catalyzed diamination substrates. Sulfonamides, anilines, benzamide, morpholine, and piperidine can serve as the external amine source.

View Article and Find Full Text PDF

A new copper-catalyzed enantioselective aza-Freidel-Crafts reaction between phenols and N-sulfonyl aldimines that provides chiral secondary benzylamines in good to excellent yields and excellent enantioselectivities (up to 99% ee) is disclosed. In particular, excellent scope with alkylimines was observed for the first time. The synthetic utility of the products was demonstrated in the first enantioselective synthesis of a dual orexin receptor antagonist, a compound that contains an amine-bearing stereocenter adjacent to a bis- ortho-functionalized arene.

View Article and Find Full Text PDF

This Perspective describes the development of a family of copper(II)-catalyzed alkene difunctionalization reactions that enable stereoselective addition of amine derivatives and alcohols onto pendant unactivated alkenes to provide a range of valuable saturated nitrogen and oxygen heterocycles. 2-Vinylanilines and related substrates undergo alternative oxidative amination or allylic amination pathways, and these reactions will also be discussed. The involvement of both polar and radical steps in the reaction mechanisms have been implicated.

View Article and Find Full Text PDF

A new method for the direct conversion of 4-pentenylsulfonamides to 2-formylpyrrolidines and a 2-ketopyrrolidine has been developed. This transformation occurs via aerobic copper-catalyzed alkene aminooxygenation where molecular oxygen serves as both oxidant and oxygen source. The 2-formylpyrrolidines can further undergo oxidative carbon-carbon bond cleavage in situ upon addition of DABCO, providing 2-pyrrolidinones.

View Article and Find Full Text PDF

2-Arylpyrrolidines occur frequently in bioactive compounds, and thus, methods to access them from readily available reagents are valuable. We report a copper-catalyzed intermolecular carboamination of vinylarenes with potassium N-carbamoyl-β-aminoethyltrifluoroborates. The reaction occurs with terminal, 1,2-disubstituted, and 1,1-disubstituted vinylarenes bearing a number of functional groups.

View Article and Find Full Text PDF