Background: Lack of fitness costs has been reported for multiple herbicide resistance traits, but the underlying evolutionary mechanisms are not well understood. Compensatory evolution that ameliorates resistance costs, has been documented in bacteria and insects but rarely studied in weeds. Dicamba resistant IAA16 (G73N) mutated kochia was previously found to have high fecundity in the absence of competition, regardless of significant vegetative growth defects.
View Article and Find Full Text PDFBackground: Precise quantification of the fitness cost of synthetic auxin resistance has been impeded by lack of knowledge about the genetic basis of resistance in weeds. Recent elucidation of a resistance-endowing IAA16 mutation (G73N) in the key weed species kochia (Bassia scoparia), allows detailed characterization of the contribution of resistance alleles to weed fitness, both in the presence and absence of herbicides. Different G73N genotypes from a segregating resistant parental line (9425) were characterized for cross-resistance to dicamba, 2,4-d and fluroxypyr, and changes on stem/leaf morphology and plant architecture.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2018
The understanding and mitigation of the appearance of herbicide-resistant weeds have come to the forefront of study in the past decade, as the number of weed species that are resistant to one or more herbicide modes of action is on the increase. Historically, weed resistance to auxin herbicides has been rare, but examples, such as L. Schrad (kochia), have appeared, posing a challenge to conventional agricultural practices.
View Article and Find Full Text PDFThe maize (Zea mays) Miniature1 (Mn1) locus encodes the cell wall invertase INCW2, which is localized predominantly in the basal endosperm transfer layer of developing kernels and catalyzes the conversion of sucrose into glucose and fructose. Mutations in Mn1 result in pleiotropic changes, including a reduction in kernel mass and a recently reported decrease in indole-3-acetic acid (IAA) levels throughout kernel development. Here, we show that mn1-1 basal kernel regions (pedicels and basal endosperm transfer layer) accumulate higher levels of sucrose and lower levels of glucose and fructose between 8 and 28 d after pollination when compared with the wild type, whereas upper regions of mn1 accumulate similar or increased concentrations of sugars.
View Article and Find Full Text PDFPhytochemistry
February 2008
The Zea mays (maize) miniature1 (Mn1) locus encodes the cell wall invertase INCW2, which is localized predominantly in the basal endosperm transfer layer (BETL) of developing kernels and catalyzes conversion of sucrose into glucose and fructose. Mutations in Mn1 result in numerous changes that include a small kernel phenotype resulting from both decreased cell size and number. To explore the pleiotropic effects of this mutation, we investigated the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) in basal regions, upper regions, and embryos of developing kernels in the inbred line W22.
View Article and Find Full Text PDFIn cowpea (Vigna unguiculata), fall armyworm (Spodoptera frugiperda) herbivory and oral secretions (OS) elicit phytohormone production and volatile emission due to inceptin [Vu-In; (+)ICDINGVCVDA(-)], a peptide derived from chloroplastic ATP synthase gamma-subunit (cATPC) proteins. Elicitor-induced plant volatiles can function as attractants for natural enemies of insect herbivores. We hypothesized that inceptins are gut proteolysis products and that larval OS should contain a mixture of related peptides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2006
Plants can perceive a wide range of biotic attackers and respond with targeted induced defenses. Specificity in plant non-self-recognition occurs either directly by perception of pest-derived elicitors or indirectly through resistance protein recognition of host targets that are inappropriately proteolyzed. Indirect plant perception can occur during interactions with pathogens, yet evidence for analogous events mediating the detection of insect herbivores remains elusive.
View Article and Find Full Text PDFCation levels within the cytosol are coordinated by a network of transporters. Here, we examine the functional roles of calcium exchanger 1 (CAX1), a vacuolar H+/Ca2+ transporter, and the closely related transporter CAX3. We demonstrate that like CAX1, CAX3 is also localized to the tonoplast.
View Article and Find Full Text PDFThe formation and hydrolysis of indole-3-acetic acid (IAA) conjugates represent a potentially important means for plants to regulate IAA levels and thereby auxin responses. The identification and characterization of mutants defective in these processes is advancing the understanding of auxin regulation and response. Here we report the isolation and characterization of the Arabidopsis iar4 mutant, which has reduced sensitivity to several IAA-amino acid conjugates.
View Article and Find Full Text PDFAuxins are hormones important for numerous processes throughout plant growth and development. Plants use several mechanisms to regulate levels of the auxin indole-3-acetic acid (IAA), including the formation and hydrolysis of amide-linked conjugates that act as storage or inactivation forms of the hormone. Certain members of an Arabidopsis amidohydrolase family hydrolyze these conjugates to free IAA in vitro.
View Article and Find Full Text PDFThe mechanisms by which plants regulate levels of the phytohormone indole-3-acetic acid (IAA) are complex and not fully understood. One level of regulation appears to be the synthesis and hydrolysis of IAA conjugates, which function in both the permanent inactivation and temporary storage of auxin. Similar to free IAA, certain IAA-amino acid conjugates inhibit root elongation.
View Article and Find Full Text PDF