Objective: Vocal fold paralysis impairs quality of life, and no curative injectable therapy exists. We evaluated injection of a novel in situ polymerizing (scaffold-forming) collagen in the presence and absence of muscle-derived motor-endplate expressing cells (MEEs) to promote medialization and recurrent laryngeal nerve (RLN) regeneration in a porcine model of unilateral vocal fold paralysis.
Methods: Twelve Yucatan minipigs underwent right RLN transection.
The protection and interrogation of pancreatic β-cell health and function is a fundamental aspect of diabetes research, including mechanistic studies, evaluation of β-cell health modulators, and development and quality control of replacement β-cell populations. However, present-day islet culture formats, including traditional suspension culture as well as many recently developed microfluidic devices, suspend islets in a liquid microenvironment, disrupting mechanochemical signaling normally found and limiting β-cell viability and function . Herein, we present a novel three-dimensional (3D) microphysiological system (MPS) to extend islet health and function by incorporating a polymerizable collagen scaffold to restore biophysical support and islet-collagen mechanobiological cues.
View Article and Find Full Text PDFDiabetes is a chronic disease characterized by elevated blood glucose levels resulting from absent or ineffective insulin release from pancreatic β-cells. β-cell function is routinely assessed in vitro using static or dynamic glucose-stimulated insulin secretion (GSIS) assays followed by insulin quantification via time-consuming, costly enzyme-linked immunosorbent assays (ELISA). In this study, we developed a highly sensitive electrochemical sensor for zinc (Zn), an ion co-released with insulin, as a rapid and low-cost method for measuring dynamic insulin release.
View Article and Find Full Text PDFThe efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days.
View Article and Find Full Text PDFSkin wounds are among the most common and costly medical problems experienced. Despite the myriad of treatment options, such wounds continue to lead to displeasing cosmetic outcomes and also carry a high burden of loss-of-function, scarring, contraction, or nonhealing. As a result, the need exists for new therapeutic options that rapidly and reliably restore skin cosmesis and function.
View Article and Find Full Text PDFTo evaluate dermal regeneration scaffolds custom-fabricated from fibril-forming oligomeric collagen where the total content and spatial gradient of collagen fibrils was specified. Microstructural and mechanical features were verified by electron microscopy and tensile testing. The ability of dermal scaffolds to induce regeneration of rat full-thickness skin wounds was determined and compared with no fill control, autograft skin and a commercial collagen dressing.
View Article and Find Full Text PDFCell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix.
View Article and Find Full Text PDFAcetyltransferase is a member of the transferase group responsible for transferring an acetyl group from acetyl-CoA to amino group of a histone lysine residue. Past efforts on histone acetylation monitoring involved biochemical analysis that do not provide spatiotemporal information in a dynamic format. We propose a novel approach to monitor acetyltransferase acetylation in live single cells using time correlated single photon counting fluorescence lifetime imaging (TCSPC-FLIM) with peptide biosensors.
View Article and Find Full Text PDFWhile much progress has been made in the war on cancer, highly invasive cancers such as pancreatic cancer remain difficult to treat and anti-cancer clinical trial success rates remain low. One shortcoming of the drug development process that underlies these problems is the lack of predictive, pathophysiologically relevant preclinical models of invasive tumor phenotypes. While present-day 3D spheroid invasion models more accurately recreate tumor invasion than traditional 2D models, their shortcomings include poor reproducibility and inability to interface with automated, high-throughput systems.
View Article and Find Full Text PDFWidespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy.
View Article and Find Full Text PDFDespite the increasingly recognized importance of the tumor microenvironment (TME) as a regulator of tumor progression, only few in vitro models have been developed to systematically study the effects of TME on tumor behavior in a controlled manner. Here we developed a three-dimensional (3D) in vitro model that recapitulates the physical and compositional characteristics of Glioblastoma (GBM) extracellular matrix (ECM) and incorporates brain stromal cells such as astrocytes and endothelial cell precursors. The model was used to evaluate the effect of TME components on migration and survival of various patient-derived GBM cell lines (GBM10, GBM43 and GBAM1) in the context of STAT3 inhibition.
View Article and Find Full Text PDFPancreatic cancer, one of the deadliest cancers, is characterized by high rates of metastasis and intense desmoplasia, both of which are associated with changes in fibrillar type I collagen composition and microstructure. Epithelial to mesenchymal transition (EMT), a critical step of metastasis, also involves a change in extracellular matrix (ECM) context as cells detach from basement membrane (BM) and engage interstitial matrix (IM). The objective of this work was to develop and apply an in-vitro three-dimensional (3D) tumor-ECM model to define how ECM composition and biophysical properties modulate pancreatic cancer EMT.
View Article and Find Full Text PDFPhosphorylation is an important post-translational modification implicated in cellular signaling and regulation. However, current methods to study protein phosphorylation by various kinases lack spatiotemporal resolution or the ability to simultaneously observe in real time the activity of multiple kinases in live cells. We present a peptide biosensor strategy with time correlated single photon counting-fluorescence lifetime imaging (TCSPC-FLIM) to interrogate the spatial and temporal dynamics of VEGFR-2 and AKT phosphorylation activity in real time in live 2D and 3D cell culture models at single cell resolution.
View Article and Find Full Text PDFHybrid usage of native tissue signals and the engineering control of collagen matrices show the ability to induce local infiltration and differentiation of hMSCs. Additionally, the solid cartilage microparticles inhibit bulk cell-mediated contraction of the composite.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase essential for a diverse set of cellular functions. Current methods for monitoring FAK activity in response to an extracellular stimulus lack spatiotemporal resolution and/or the ability to perform multiplex detection. Here we report on a novel approach to monitor the real-time kinase phosphorylation activity of FAK in live single cells by fluorescence lifetime imaging.
View Article and Find Full Text PDFAbdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation.
View Article and Find Full Text PDFBiological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology.
View Article and Find Full Text PDFA significant challenge facing tissue engineers is the design and development of complex multitissue systems, including vascularized tissue-tissue interfaces. While conventional in vitro models focus on either vasculogenesis (de novo formation of blood vessels) or angiogenesis (vessels sprouting from existing vessels or endothelial monolayers), successful therapeutic vascularization strategies will likely rely on coordinated integration of both processes. To address this challenge, we developed a novel in vitro multitissue interface model in which human endothelial colony forming cell (ECFC)-encapsulated tissue spheres are embedded within a surrounding tissue microenvironment.
View Article and Find Full Text PDFCollagen is used extensively for tissue engineering due to its prevalence in connective tissues and its role in defining tissue biophysical and biological signalling properties. However, traditional collagen-based materials fashioned from atelocollagen and telocollagen have lacked collagen densities, multi-scale organization, mechanical integrity, and proteolytic resistance found within tissues in vivo. Here, highly interconnected low-density matrices of D-banded fibrils were created from collagen oligomers, which exhibit fibrillar as well as suprafibrillar assembly.
View Article and Find Full Text PDFDiffuse infiltration across brain tissue is a hallmark of glioblastoma and the main cause of unsuccessful total resection that leads to tumor reappearance. A subpopulation termed glioblastoma stem cells (GSCs) has been directly related to aggressive invasion; nonetheless, their migratory characteristics and regulation by the microenvironment are still unknown. In this study, we developed a composite matrix of hyaluronan (HA) structurally supported by a collagen-oligomer fibril network to simulate the brain tumor extracellular matrix (ECM) composition.
View Article and Find Full Text PDFTo recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa).
View Article and Find Full Text PDFHuman cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices.
View Article and Find Full Text PDFRecent advances in modulating collagen building blocks enable the design and control of the microstructure and functional properties of collagen matrices for tissue engineering and regenerative medicine. However, this is typically achieved by iterative experimentations and that process can be substantially shortened by computational predictions. Computational efforts to correlate the microstructure of fibrous and/or nonfibrous scaffolds to their functionality such as mechanical or transport properties have been reported, but the predictability is still significantly limited due to the intrinsic complexity of fibrous/nonfibrous networks.
View Article and Find Full Text PDF