Publications by authors named "Sherry L Mowbray"

New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity.

View Article and Find Full Text PDF

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of .

View Article and Find Full Text PDF

Because tuberculosis is still a major health threat worldwide, identification of new drug targets is urgently needed. In this study, we considered type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis as a potential target, and addressed known problems of previous inhibitors in terms of their sensitivity to hydrolysis catalyzed by phosphatase enzymes, which impaired their potential use as drugs. To this end, we synthesized six novel phosphomimetic compounds designed to be hydrolytically stable analogs of the substrate ribose 5-phosphate and the best known inhibitor 5-phospho-d-ribonate.

View Article and Find Full Text PDF

The ever-increasing number of bacteria resistant to the currently available antibacterial agents is a great medical problem today, and new antibiotics with novel mechanisms of action are urgently needed. Among the validated antibacterial drug targets against which new classes of antibiotics might be directed is bacterial type I signal peptidase (SPase I), an essential part of the Tat and Sec secretory systems. SPase I is responsible for the hydrolysis of the N-terminal signal peptides from proteins secreted across the cytoplasmic membrane and plays a key role in bacterial viability and virulence.

View Article and Find Full Text PDF

Type II NADH dehydrogenase (NDH-2) is an essential component of electron transfer in many microbial pathogens but has remained largely unexplored as a potential drug target. Previously, quinolinyl pyrimidines were shown to inhibit NDH-2, as well as the growth of the bacteria [Shirude, P. S.

View Article and Find Full Text PDF

Oligopeptide boronates with a lipophilic tail are known to inhibit the type I signal peptidase in E. coli, which is a promising drug target for developing novel antibiotics. Antibacterial activity depends on these oligopeptides having a cationic modification to increase their permeation.

View Article and Find Full Text PDF

Type I signal peptidase, with its vital role in bacterial viability, is a promising but underexploited antibacterial drug target. In the light of steadily increasing rates of antimicrobial resistance, we have developed novel macrocyclic lipopeptides, linking P2 and P1' by a boronic ester warhead, capable of inhibiting Escherichia coli type I signal peptidase (EcLepB) and exhibiting good antibacterial activity. Structural modifications of the macrocyclic ring, the peptide sequence and the lipophilic tail led us to 14 novel macrocyclic boronic esters.

View Article and Find Full Text PDF

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini.

View Article and Find Full Text PDF

Blocking the 2-C-methyl-d-erythrithol-4-phosphate pathway for isoprenoid biosynthesis offers new ways to inhibit the growth of Plasmodium spp. Fosmidomycin [(3-(N-hydroxyformamido)propyl)phosphonic acid, 1] and its acetyl homologue FR-900098 [(3-(N-hydroxyacetamido)propyl)phosphonic acid, 2] potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this biosynthetic pathway. Arylpropyl substituents were introduced at the β-position of the hydroxamate analogue of 2 to study changes in lipophilicity, as well as electronic and steric properties.

View Article and Find Full Text PDF

Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals.

View Article and Find Full Text PDF

This is the first report of 5-styryl-oxathiazol-2-ones as inhibitors of the Mycobacterium tuberculosis (Mtb) proteasome. As part of the study, the structure-activity relationship of oxathiazolones as Mtb proteasome inhibitors has been investigated. Furthermore, the prepared compounds displayed a good selectivity profile for Mtb compared to the human proteasome.

View Article and Find Full Text PDF

Blocking the 2-C-methyl-d-erythrithol-4-phosphate (MEP) pathway for isoprenoid biosynthesis offers interesting prospects for inhibiting Plasmodium or Mycobacterium spp. growth. Fosmidomycin (1) and its homologue FR900098 (2) potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this pathway.

View Article and Find Full Text PDF

Eukaryotic cytosolic ACBPs (acyl-CoA-binding proteins) bind acyl-CoA esters and maintain a cytosolic acyl-CoA pool, but the thermodynamics of their protein-lipid interactions and physiological relevance in plants are not well understood. Arabidopsis has three cytosolic ACBPs which have been identified as AtACBP4, AtACBP5 and AtACBP6, and microarray data indicated that all of them are expressed in seeds; AtACBP4 is expressed in early embryogenesis, whereas AtACBP5 is expressed later. ITC (isothermal titration calorimetry) in combination with transgenic Arabidopsis lines were used to investigate the roles of these three ACBPs from Arabidopsis thaliana.

View Article and Find Full Text PDF

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year.

View Article and Find Full Text PDF

The antimalarial compound fosmidomycin targets DXR, the enzyme that catalyzes the first committed step in the MEP pathway, producing the essential isoprenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. The MEP pathway is used by a number of pathogens, including Mycobacterium tuberculosis and apicomplexan parasites, and differs from the classical mevalonate pathway that is essential in humans. Using a structure-based approach, we designed a number of analogues of fosmidomycin, including a series that are substituted in both the Cα and the hydroxamate positions.

View Article and Find Full Text PDF

Mycobacterium tuberculosis glutamine synthetase (MtGS) is a promising target for antituberculosis drug discovery. In a recent high-throughput screening study we identified several classes of MtGS inhibitors targeting the ATP-binding site. We now explore one of these classes, the 2-tert-butyl-4,5-diarylimidazoles, and present the design, synthesis, and X-ray crystallographic studies leading to the identification of MtGS inhibitors with submicromolar IC(50) values and promising antituberculosis MIC values.

View Article and Find Full Text PDF

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize the essential isoprenoid precursor isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway that is found in humans. As part of a structure-based drug-discovery program against tuberculosis, DXR, the enzyme that carries out the second step in the MEP pathway, has been investigated. This enzyme is the target for the antibiotic fosmidomycin and its active acetyl derivative FR-900098.

View Article and Find Full Text PDF

Cinnamaldehyde derivatives were synthesized in good to excellent yields in one step by a mild and selective, base-free palladium(II)-catalyzed oxidative Heck reaction starting from acrolein and various arylboronic acids. Prepared α,β-unsaturated aldehydes were used for synthesis of novel α-aryl substituted fosmidomycin analogues, which were evaluated for their inhibition of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase. IC(50) values between 0.

View Article and Find Full Text PDF

The natural antibiotic fosmidomycin acts via inhibition of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. Fosmidomycin is active on Mycobacterium tuberculosis DXR (MtDXR), but it lacks antibacterial activity probably because of poor uptake. α-Aryl substituted fosmidomycin analogues have more favorable physicochemical properties and are also more active in inhibiting malaria parasite growth.

View Article and Find Full Text PDF

Scots pine (Pinus sylvestris) secretes a number of small, highly-related, disulfide-rich proteins (Sp-AMPs) in response to challenges with fungal pathogens such as Heterobasidion annosum, although their biological role has been unknown. Here, we examined the expression patterns of these genes, as well as the structure and function of the encoded proteins. Northern blots and quantitative real time PCR showed increased levels of expression that are sustained during the interactions of host trees with pathogens, but not non-pathogens, consistent with a function in conifer tree defenses.

View Article and Find Full Text PDF

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway found in humans. As part of a structure-based drug-discovery program against tuberculosis, IspD, the enzyme that carries out the third step in the MEP pathway, was targeted. Constructs of both the Mycobacterium smegmatis and the Mycobacterium tuberculosis enzymes that were suitable for structural and inhibitor-screening studies were engineered.

View Article and Find Full Text PDF

ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of D-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.

View Article and Find Full Text PDF

Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was seven fold decreased whereas K M was unaffected in the presence of 10 microM Zn2+.

View Article and Find Full Text PDF