Strong gravitational lensing and microlensing of supernovae (SNe) are emerging as a new probe of cosmology and astrophysics in recent years. We provide an overview of this nascent research field, starting with a summary of the first discoveries of strongly lensed SNe. We describe the use of the time delays between multiple SN images as a way to measure cosmological distances and thus constrain cosmological parameters, particularly the Hubble constant, whose value is currently under heated debates.
View Article and Find Full Text PDFThe local expansion rate of the Universe is parametrized by the Hubble constant, [Formula: see text], the ratio between recession velocity and distance. Different techniques lead to inconsistent estimates of [Formula: see text] Observations of Type Ia supernovae (SNe) can be used to measure [Formula: see text], but this requires an external calibrator to convert relative distances to absolute ones. We use the angular diameter distance to strong gravitational lenses as a suitable calibrator, which is only weakly sensitive to cosmological assumptions.
View Article and Find Full Text PDF