Publications by authors named "Sherry G Clendenon"

Somitogenesis is often described using the clock-and-wavefront (CW) model, which does not explain how molecular signaling rearranges the pre-somitic mesoderm (PSM) cells into somites. Our scanning electron microscopy analysis of chicken embryos reveals a caudally-progressing epithelialization front in the dorsal PSM that precedes somite formation. Signs of apical constriction and tissue segmentation appear in this layer 3-4 somite lengths caudal to the last-formed somite.

View Article and Find Full Text PDF

Drug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue.

View Article and Find Full Text PDF

Mitochondrial injury and depolarization are primary events in acetaminophen hepatotoxicity. Previous studies have shown that restoration of mitochondrial function in surviving hepatocytes, which is critical to recovery, is at least partially accomplished via biogenesis of new mitochondria. However, other studies indicate that mitochondria also have the potential to spontaneously repolarize.

View Article and Find Full Text PDF

Changes in blood flow velocity and distribution are vital in maintaining tissue and organ perfusion in response to varying cellular needs. Further, appearance of defects in microcirculation can be a primary indicator in the development of multiple pathologies. Advances in optical imaging have made intravital microscopy (IVM) a practical approach, permitting imaging at the cellular and subcellular level in live animals at high-speed over time.

View Article and Find Full Text PDF

Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software.

View Article and Find Full Text PDF

Computational models of normal liver function and xenobiotic induced liver damage are increasingly being used to interpret in vitro and in vivo data and as an approach to the de novo prediction of the liver's response to xenobiotics. The microdosimetry (dose at the level of individual cells) of xenobiotics vary spatially within the liver because of both compound-independent and compound-dependent factors. In this paper, we build model liver lobules to investigate the interplay between vascular structure, blood flow and cellular transport that lead to regional variations in microdosimetry.

View Article and Find Full Text PDF

Background: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients.

View Article and Find Full Text PDF

In autosomal dominant polycystic kidney disease (ADPKD), cysts accumulate and progressively impair renal function. Mutations in PKD1 and PKD2 genes are causally linked to ADPKD, but how these mutations drive cell behaviors that underlie ADPKD pathogenesis is unknown. Human ADPKD cysts frequently express cadherin-8 (cad8), and expression of cad8 ectopically in vitro suffices to initiate cystogenesis.

View Article and Find Full Text PDF

We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level.

View Article and Find Full Text PDF

Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment.

View Article and Find Full Text PDF

Background: Zebrafish intersegmental vessel (ISV) growth is widely used to study angiogenesis and to screen drugs and toxins that perturb angiogenesis. Most current ISV growth assays observe the presence or absence of ISVs or perturbation of ISV morphology but do not measure growth dynamics. We have developed a four-dimensional (4D, space plus time) quantitative analysis of angiogenic sprout growth dynamics for characterization of both normal and perturbed growth.

View Article and Find Full Text PDF

High-resolution three-dimensional imaging of fixed embryonic kidney tissues has advanced considerably in the past decade. Here we developed a new process for imaging whole metanephric organ culture at cell resolution in three dimensions over time. This technique combines the use of the newly available generation of infrared-optimized long working distance, high numerical aperture objectives and multiphoton fluorescence microscopy with a new system for vital staining of metanephric organ cultures with bodipy ceramide.

View Article and Find Full Text PDF

Background: Cadherins orchestrate tissue morphogenesis by controlling cell adhesion, migration and differentiation. Various cadherin family members are expressed in the retina and other neural tissues during embryogenesis, regulating development of these tissues. Cadherin-11 (Cdh11) is expressed in mesenchymal, bone, epithelial, neural and other tissues, and this cadherin was shown to control cell migration and differentiation in neural crest, tumor and bone cells.

View Article and Find Full Text PDF

Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently.

View Article and Find Full Text PDF

In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy.

View Article and Find Full Text PDF

This study was designed to develop a zebrafish experimental model to examine defects in retinoic acid (RA) signaling caused by embryonic ethanol exposure. RA deficiency may be a causative factor leading to a spectrum of birth defects classified as fetal alcohol spectrum disorder (FASD). Experimental support for this hypothesis using Xenopus showed that effects of treatment with ethanol could be partially rescued by adding retinoids during ethanol treatment.

View Article and Find Full Text PDF

Cadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith.

View Article and Find Full Text PDF

Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants.

View Article and Find Full Text PDF