To combine the potency of trimetrexate (TMQ) or piritrexim (PTX) with the species selectivity of trimethoprim (TMP), target based design was carried out with the X-ray crystal structure of human dihydrofolate reductase (hDHFR) and the homology model of Pneumocystis jirovecii DHFR (pjDHFR). Using variation of amino acids such as Met33/Phe31 (in pjDHFR/hDHFR) that affect the binding of inhibitors due to their distinct positive or negative steric effect at the active binding site of the inhibitor, we designed a series of substituted-pyrrolo[2,3-d]pyrimidines. The best analogs displayed better potency (IC) than PTX and high selectivity for pjDHFR versus hDHFR, with 4 exhibiting a selectivity for pjDHFR of 24-fold.
View Article and Find Full Text PDFInfection by the parasite (tg) can lead to toxoplasmosis in immunocompromised patients such as organ transplant, cancer and HIV/AIDS patients. The bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) enzyme is crucial for nucleotide synthesis in , and represents a potential target to combat infection. While species selectivity with drugs has been attained for DHFR, TS is much more conserved across species and specificity is significantly more challenging.
View Article and Find Full Text PDFOpportunistic infections caused by Pneumocystis jirovecii (P. jirovecii, pj), Toxoplasma gondii (T. gondii, tg), and Mycobacterium avium (M.
View Article and Find Full Text PDFA major concern of immunocompromised patients, in particular those with AIDS, is susceptibility to infection caused by opportunistic pathogens such as Pneumocystis jirovecii, which is a leading cause of pneumonia in immunocompromised patients. We report the first kinetic and structural data for 2,4-diamino-6-[(2',5'-dichloro anilino)methyl]pyrido[2,3-d]pyrimidine (OAAG324), a potent inhibitor of dihydrofolate reductase (DHFR) from P. jirovecii (pjDHFR), and also for trimethoprim (TMP) and methotrexate (MTX) with pjDHFR, Pneumocystis carinii DHFR (pcDHFR), and human DHFR (hDHFR).
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2013
Toxoplasma gondii is an obligate intracellular parasite that permanently infects warm-blooded vertebrates through its ability to convert into a latent tissue cyst form. The latent form (bradyzoite) can reinitiate a life-threatening acute infection if host immunity wanes, most commonly in AIDS or organ transplant patients. We have previously shown that bradyzoite development is accompanied by phosphorylation of the parasite eukaryotic initiation factor 2 alpha subunit (eIF2α), which dampens global protein synthesis and reprograms gene expression.
View Article and Find Full Text PDFIn order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h) DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule.
View Article and Find Full Text PDFWhile seeking a new host cell, obligate intracellular parasites, such as the protozoan Toxoplasma gondii, must be able to endure the stress of an extracellular environment. The mechanisms Toxoplasma use to remain viable while deprived of a host cell are not understood. We have previously shown that phosphorylation of Toxoplasma eukaryotic initiation factor-2α (TgIF2α) is a conserved response to stress.
View Article and Find Full Text PDFThe present work deals with design, synthesis and biological evaluation of novel, diverse compounds as potential inhibitors of dihydrofolate reductase (DHFR) from opportunistic microorganisms; Pneumocystis carinii (pc), Toxoplasma gondii (tg) and Mycobacterium avium (ma). A set of 14 structurally diverse compounds were designed with varying key pharmacophoric features of DHFR inhibitors, bulky distal substitutions and different bridges joining the distal part and 2,4-diaminopyrimidine nucleus. The designed compounds were synthesized and evaluated in enzyme assay against pc, tg and ma DHFR.
View Article and Find Full Text PDFWe report the development of CoMFA analysis models that correlate the 3D chemical structures of 80 compounds with 6-5 fused ring system synthesized in our laboratory and their inhibitory potencies against tgDHFR and rlDHFR. In addition to conventional CoMFA analysis, we used two routines available in the literature aimed at the optimization of CoMFA: all-orientation search (AOS) and cross-validated r(2)-guided region selection (q(2)-GRS) to further optimize the models. During this process, we identified a problem associated with q(2)-GRS routine and modified using two strategies.
View Article and Find Full Text PDFA novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 6-16 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6-16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5.
View Article and Find Full Text PDFTwenty-one biguanide and dihydrotriazine derivatives were synthesized and evaluated as inhibitors of dihydrofolate reductase (DHFR) from opportunistic microorganisms: Pneumocystis carinii (pc), Toxoplasma gondii (tg), Mycobacterium avium (ma), and rat liver (rl). The most potent compound in the series was B2-07 with 12 nM activity against tgDHFR. The most striking observation was that B2-07 showed similar potency to trimetrexate, approximately 233-fold improved potency over trimethoprim and approximately 7-fold increased selectivity as compared to trimetrexate against tgDHFR.
View Article and Find Full Text PDFTo optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 and 1.4A, respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.
View Article and Find Full Text PDFTo understand the role of specific active site residues in conferring selective dihydrofolate reductase (DHFR) inhibition from pathogenic organisms such as Pneumocystis carinii (pc) or Pneumocystis jirovecii (pj), the causative agent in AIDS pneumonia, it is necessary to evaluate the role of these residues in the human enzyme. We report the first kinetic parameters for DHFR from pjDHFR and pcDHFR with methotrexate (MTX), trimethoprim (TMP), and its potent analogue, PY957. We also report the mutagenesis and kinetic analysis of active site mutant proteins at positions 35 and 64 of human (h) DHFR and the crystal structure determinations of hDHFR ternary complexes of NADPH and PY957 with the wild-type DHFR enzyme, the single mutant protein, Gln35Lys, and two double mutant proteins, Gln35Ser/Asn64Ser and Gln35Ser/Asn64Phe.
View Article and Find Full Text PDFN9-substituted 2,4-diaminoquinazolines were synthesized and evaluated as inhibitors of Pneumocystis carinii (pc) and Toxoplasma gondii (tg) dihydrofolate reductase (DHFR). Reduction of commercially available 2,4-diamino-6-nitroquinazoline 14 with Raney nickel afforded 2,4,6-triaminoquinazoline 15. Reductive amination of 15 with the appropriate benzaldehydes or naphthaldehydes, followed by N9-alkylation, afforded the target compounds 5- 13.
View Article and Find Full Text PDFRecent reports of the slow-tight binding inhibition of bovine liver dihydrofolate reductase (bDHFR) in the presence of polyphenols isolated from green tea leaves has spurred renewed interest in the biochemical properties of bDHFR. Earlier studies were done with native bDHFR but in order to validate models of polyphenol binding to bDHFR, larger quantities of bDHFR are necessary to support structural studies. Bovine DHFR differs from its closest sequence homologue, murine DHFR, by 19 amino acids.
View Article and Find Full Text PDFNovel classical antifolates (3 and 4) and 17 nonclassical antifolates (11-27) were synthesized as antitumor and/or antiopportunistic infection agents. Intermediates for the synthesis of 3, 4, and 11-27 were 2,4-diamino-5-alkylsubstituted-7H-pyrrolo[2,3-d]pyrimidines, 31 and 38, prepared by a ring transformation/ring annulation sequence of 2-amino-3-cyano-4-alkyl furans to which various aryl thiols were attached at the 6-position via an oxidative addition reaction using I2. The condensation of alpha-hydroxy ketones with malonodinitrile afforded the furans.
View Article and Find Full Text PDFBackground And Methodology: Toxoplasma gondii causes substantial morbidity, mortality, and costs for healthcare in the developed and developing world. Current medicines are not well tolerated and cause hypersensitivity reactions. The dihydrotriazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(3'(2-chloro-, 4-trifluoromethoxyphenoxy)propyloxy)-1, 3, 5-triazine), which inhibits dihydrofolate reductase (DHFR), is highly effective against Plasmodium falciparum, Plasmodium vivax, and apicomplexans related to T.
View Article and Find Full Text PDFTwo boron-containing, ortho-icosahedral carborane lipophilic antifolates were synthesized, and the crystal structures of their ternary complexes with human dihydrofolate reductase (DHFR) and dihydronicotinamide adenine dinucleotide phosphate were determined. The compounds were screened for activity against DHFR from six sources (human, rat liver, Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium, and Lactobacillus casei) and showed good to modest activity against these enzymes. The compounds were also tested for antibacterial activity against L.
View Article and Find Full Text PDFThe classical antifolate N-{4-[(2,4-diamino-5-ethyl-7H-pyrrolo[2,3-d]pyrimidin-6-yl)sulfanyl]benzoyl}-l-glutamic acid (2) and 15 nonclassical analogues (3-17) were synthesized as potential dihydrofolate reductase (DHFR) inhibitors and as antitumor agents. 5-Ethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (20) served as the key intermediate to which various aryl thiols and a heteroaryl thiol were appended at the 6-position via an oxidative addition reaction. The classical analogue 2 was synthesized by coupling the benzoic acid derivative 18 with diethyl l-glutamate followed by saponification.
View Article and Find Full Text PDFWe report that quinoline derivative MC1626, first described as an inhibitor of the histone acetyltransferase (HAT) GCN5, is active against the protozoan parasite Toxoplasma gondii in vitro. However, MC1626 does not inhibit Toxoplasma GCN5 HATs or reduce HAT-mediated activity; rather, this quinoline may target the plastid organelle called the apicoplast.
View Article and Find Full Text PDFSix novel C9-methyl-5-substituted-2,4-diaminopyrrolo[2,3-d]pyrimidines 18-23 were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and as anti-opportunistic agents. These compounds represent the only examples of 9-methyl substitution in the carbon-carbon bridge of 2,4-diaminopyrrolo[2,3-d]pyrimidines. The analogs 18-23 were synthesized in a concise eight-step procedure starting from the appropriate commercially available aromatic methyl ketones.
View Article and Find Full Text PDFAs part of a search for dihydrofolate reductase (DHFR) inhibitors combining the high potency of piritrexim (PTX) with the high antiparasitic vs mammalian selectivity of trimethoprim (TMP), the heretofore undescribed 2,4-diamino-6-(2',5'-disubstituted benzyl)pyrido[2,3-d]pyrimidines 6-14 with O-(omega-carboxyalkyl) or omega-carboxy-1-alkynyl groups on the benzyl moiety were synthesized and tested against Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium DHFR vs rat DHFR. Three N-(2,4-diaminopteridin-6-yl)methyl)-2'-(omega-carboxy-1-alkynyl)dibenz[b,f]azepines (19-21) were also synthesized and tested. The pyridopyrimidine with the best combination of potency and selectivity was 2,4-diamino-5-methyl-6-[2'-(5-carboxy-1-butynyl)-5'-methoxy]benzyl]pyrimidine (13), with an IC(50) value of 0.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2005
The opportunistic apicomplexan parasite Toxoplasma gondii damages fetuses in utero and threatens immunocompromised individuals. The toxicity associated with standard antitoxoplasmal therapies, which target the folate pathway, underscores the importance of examining alternative pharmacological strategies. Parasitic protozoa cannot synthesize purines de novo; consequently, targeting purine salvage enzymes is a plausible pharmacological strategy.
View Article and Find Full Text PDFPneumonia caused by Pneumocystis jirovecii is still a major opportunistic infection among patients with AIDS. This opportunitistic pathogen is susceptible to therapy with inhibitors of the enzyme dihydrofolate reductase (DHFR) that target cell growth. Recent studies have shown that recombinant human-derived Pneumocystis DHFR (pDHFR) differs from rat-derived pDHFR by 38% in amino acid sequence.
View Article and Find Full Text PDF