Publications by authors named "Sherry Blackmon"

Article Synopsis
  • Influenza A virus (IAV) and influenza D virus (IDV) are both present in pigs, with IAV causing nearly all pigs to become sick but with low death rates, while IDV leads to mild respiratory issues.
  • Research indicated that IAV can inhibit IDV replication if it infects first, and vice versa, depending on the timing of the infections, with interference linked to the immune response triggered by the first virus.
  • In practical terms, while IAV reduced the shedding and replication of IDV during coinfections in pigs, the overall disease severity was not significantly worse compared to pigs infected with only IAV, showing that the immune response plays a crucial role in the interaction between these viruses.
View Article and Find Full Text PDF

An outbreak of respiratory disease caused by the equine-origin influenza A(H3N8) virus was first detected in dogs in 2004 and since then has been enzootic among dogs. Currently, the molecular mechanisms underlying host adaption of this virus from horses to dogs is unknown. Here, we have applied quantitative binding, growth kinetics, and immunofluorescence analyses to elucidate these mechanisms.

View Article and Find Full Text PDF

Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.

View Article and Find Full Text PDF

Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health.

View Article and Find Full Text PDF

Subtype H6 influenza A viruses (IAVs) are commonly detected in wild birds and domestic poultry and can infect humans. In 2010, a H6N6 virus emerged in southern China, and since then, it has caused sporadic infections among swine. We show that this virus binds to α2,6-linked and α2,3-linked sialic acids.

View Article and Find Full Text PDF

An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV.

View Article and Find Full Text PDF

Metagenomic characterization of water virome was performed in four Mississippi catfish ponds. Although differing considerably from African swine fever virus (ASFV), 48 of 446,100 sequences from 12 samples were similar enough to indicate that they represent new members in the family Asfarviridae. At present, ASFV is the only member of Asfarviridae, and this study presents the first indication of a similar virus in North America.

View Article and Find Full Text PDF

HBO1 acetylates lysine residues of histones and is involved in DNA replication and gene transcription. Two isoforms of JADE1, JADE1S and JADE1L, bind HBO1 and promote acetylation of histones in chromatin context. We characterized the role of JADE1-HBO1 complexes in vitro and in vivo during epithelial cell replication.

View Article and Find Full Text PDF